Skip to main content
Log in

On Concavity of Solutions of the Nonlinear Poisson Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the nonlinear Poisson equation \(-\Delta u = f(u)\) in domains \(\Omega \subset {\mathbb {R}}^n\) with Dirichlet boundary conditions on \(\partial \Omega \). We show (for monotonically increasing concave f with small Lipschitz constant) that if \(D^2 u\) is negative semi-definite on the boundary, then u is concave. A conjecture of Saint Venant from 1856 (proven by Polya in 1948) is that among all domains \(\Omega \) of fixed measure, the solution of \(-\Delta u =1\) assumes its largest maximum when \(\Omega \) is a ball. We extend this to \(-\Delta u =f(u)\) for monotonically increasing f with small Lipschitz constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arango, J., Gomez, A.: Critical points of solutions to elliptic problems in planar domains. Commun. Pure Appl. Anal. 10(1), 327–338, 2011

    MathSciNet  MATH  Google Scholar 

  2. Baernstein, A.: Symmetrization in analysis. With David Drasin and Richard S. Laugesen. With a Foreword by Walter Hayman. New Mathematical Monographs, vol. 36, Cambridge University Press, Cambridge, 2019

  3. Bandle, C.: On isoperimetric gradient bounds for Poisson problems and problems of torsional creep. Z. Angew. Math. Phys. 30(4), 713–715, 1979

    Article  MathSciNet  Google Scholar 

  4. Beck, T.: Uniform level set estimates for ground state eigenfunctions. SIAM J. Math. Anal. 50(4), 4483–4502, 2018

    Article  MathSciNet  Google Scholar 

  5. Beck, T.: The torsion function of convex domains of high eccentricity. Potential Anal. 53, 701–726, 2020

    Article  MathSciNet  Google Scholar 

  6. Beck, T.: Localization of the first eigenfunction of a convex domain. Commun. PDE (to appear)

  7. Bian, B., Guan, P.: A microscopic convexity principle for nonlinear partial differential equations. Invent. Math. 177, 307–335, 2009

    Article  MathSciNet  ADS  Google Scholar 

  8. Borell, C.: Brownian motion in a convex ring and quasiconcavity. Commun. Math. Phys. 86, 143–147, 1982

    Article  MathSciNet  ADS  Google Scholar 

  9. Borell, C.: A note on parabolic convexity and heat conduction. Annales de l’I.H.P. Probabilités et statistiques, Tome, 32, 387–393 1996

  10. Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn–Minkowski and Prekopa Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22, 366–389, 1976

    Article  MathSciNet  Google Scholar 

  11. Caffarelli, L., Spruck, J.: Convexity properties of solutions to some classical variational problems. Commun. Partial Differ. Equ. 7, 1337–1379, 1982

    Article  MathSciNet  Google Scholar 

  12. Caffarelli, L.A., Friedman, A.: Convexity of solutions of some semilinear elliptic equations. Duke Math. J 52, 431–455, 1985

    Article  MathSciNet  Google Scholar 

  13. Chang, S.-Y.A., Ma, X.-N., Yang, P.: Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete Contin. Dyn. Syst. 28(3), 1151–1164, 2010

    Article  MathSciNet  Google Scholar 

  14. Chau, A., Weinkove, B.: The Stefan Problem and Concavity. arXiv:2004.04284

  15. Finn, D.: Convexity of level curves for solutions to semilinear elliptic equations. Commun. Pure Appl. Anal. 7(6), 1335–1343, 2008

    Article  MathSciNet  Google Scholar 

  16. Gabriel, R.: A result concerning convex level surfaces of 3-dimensional harmonic functions. J. Lond. Math. Soc. 32, 286–294, 1957

    Article  MathSciNet  Google Scholar 

  17. Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243, 1979

    Article  MathSciNet  ADS  Google Scholar 

  18. Guggenheimer, H.: Concave solutions of a Dirichlet problem. Proc. Am. Math. Soc. 40, 501–506, 1973

    Article  MathSciNet  Google Scholar 

  19. Hamel, F., Nadirashvili, N., Sire, Y.: Yannick convexity of level sets for elliptic problems in convex domains or convex rings: two counterexamples. Am. J. Math. 138(2), 499–527, 2016

    Article  Google Scholar 

  20. Henrot, A., Lucardesi, I., Philippin, G.: On two functionals involving the maximum of the torsion function. ESAIM COCV 24, 1585–1604, 2018

    Article  MathSciNet  Google Scholar 

  21. Henrot, A., Nitsch, C., Salani, P., Trombetti, C.: Optimal concavity of the torsion function. J. Optim. Theory Appl. 178, 26–35, 2018

    Article  MathSciNet  Google Scholar 

  22. Hoskins, J., Steinerberger, S.: Towards Optimal Gradient Bounds for the Torsion Function in the Plane. arXiv:1912.08376

  23. Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics, vol. 1150, Springer, Berlin, 1985

  24. Keady, G.: The power concavity of solutions of some semilinear elliptic boundary-value problems. Bull. Aust. Math. Soc. 31, 181–184, 1985

    Article  MathSciNet  Google Scholar 

  25. Keady, G., McNabb, A.: The elastic torsion problem: solutions in convex domains. New Zealand J. Math. 22(2), 43–64, 1993

    MathSciNet  MATH  Google Scholar 

  26. Kennington, A.U.: Power concavity and boundary value problems. Indiana Univ. Math. J. 34(3), 687–704, 1985

    Article  MathSciNet  Google Scholar 

  27. Korevaar, N.: Convex solutions to nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math J. 32, 603–614, 1983

    Article  MathSciNet  Google Scholar 

  28. Korevaar, N., Lewis, J.L.: Convex solutions of certain elliptic equations have constant rank hessians. Arch. Ration. Mech. Anal. 97, 19–32, 1987

    Article  MathSciNet  Google Scholar 

  29. Kosmodem’yanskii, A.A.: Sufficient conditions for the concavity of the solution of the Dirichlet problem for the equation \(\Delta u =- 1\). Math. Notes Acad. Sci. USSR 42, 798–801, 1987

    MathSciNet  Google Scholar 

  30. Kosmodemyanskii, A.: The behavior of solutions of the equation \(\Delta u = -1\) in convex domains (in Russian). Dokl. Akad. Nauk SSSR, 304(3), 546–548, 1989; translation in Soviet Math. Dokl. 39, 112–114, 1989

  31. Lions, P.-L.: Two geometrical properties of solutions of semilinear problems. Appl. Anal. 12, 267–272, 1981

    Article  MathSciNet  ADS  Google Scholar 

  32. Lu, J., Steinerberger, S.: Optimal trapping for Brownian motion: a nonlinear analogue of the torsion function. Potential Anal. 54, 687–698, 2021

    Article  MathSciNet  Google Scholar 

  33. X-N, Ma, Shi, S., Ye, Y.: The convexity estimates for the solutions of two elliptic equations. Commun. Partial Differ. Equ. 37(12), 2116–2137, 2012

    Article  MathSciNet  Google Scholar 

  34. Makar-Limanov, L.G.: The solution of the Dirichlet problem for the equation \(\Delta u = -1\) in a convex region. Mat. Zametki 9, 89–92, 1971

    MathSciNet  MATH  Google Scholar 

  35. Polya, G.: Torsional rigidity, principal frequency, elecostactic capacity and symmetrization. Quart. Appl. Math. 6, 267–277, 1948

    Article  MathSciNet  Google Scholar 

  36. Steinerberger, S.: Topological bounds on Fourier coefficients and applications to torsion. J. Funct. Anal. 274, 1611–1630, 2018

    Article  MathSciNet  Google Scholar 

  37. Steinerberger, S.: A Pointwise Inequality for Derivatives of Solutions of the Heat Equation in Bounded Domains. arXiv:2102.02736

  38. Talenti, G.: Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 3(4), 697–718, 1976

  39. Talenti, G.: Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura Appl. 120, 159–184, 1977

    Article  MathSciNet  Google Scholar 

  40. Weitsman, A.: Symmetrization and the Poincare metric. Ann. Math. 124, 159–169, 1986

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Steinerberger.

Additional information

Communicated by P.-L. Lions.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.S. is supported by the NSF (DMS-2123224) and the Alfred P. Sloan Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinerberger, S. On Concavity of Solutions of the Nonlinear Poisson Equation. Arch Rational Mech Anal 244, 209–224 (2022). https://doi.org/10.1007/s00205-022-01759-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-022-01759-3

Navigation