Skip to main content
Log in

Steady Navier–Stokes Equations in Planar Domains with Obstacle and Explicit Bounds for Unique Solvability

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Fluid flows around an obstacle generate vortices which, in turn, generate forces on the obstacle. This phenomenon is studied for planar viscous flows governed by the stationary Navier–Stokes equations with inhomogeneous Dirichlet boundary data in a (virtual) square containing an obstacle. In a symmetric framework the appearance of forces is strictly related to the multiplicity of solutions. Precise bounds on the data ensuring uniqueness are then sought and several functional inequalities (concerning relative capacity, Sobolev embedding, solenoidal extensions) are analyzed in detail: explicit bounds are obtained for constant boundary data. The case of “almost symmetric” frameworks is also considered. A universal threshold on the Reynolds number ensuring that the flow generates no lift is obtained regardless of the shape and the nature of the obstacle. Based on the asymmetry/multiplicity principle, the performance of different obstacle shapes is then compared numerically. Finally, connections of the results with elasticity and mechanics are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Acevedo, P., Amrouche, C., Conca, C., Ghosh, A.: Stokes and Navier–Stokes equations with Navier boundary condition. C. R. Acad. Sci. Sér. I Math. 357, 115–119, 2019

  2. Acheson, D.: Elementary Fluid Dynamics. Oxford University Press, Oxford 1990

    MATH  Google Scholar 

  3. Ackroyd, J.A., Axcell, B.P., Ruban, A.I.: Early Developments of Modern Aerodynamics. Butterworth-Heinemann, Oxford 2001

    Google Scholar 

  4. Al-Gwaiz, M., Benci, V., Gazzola, F.: Bending and stretching energies in a rectangular plate modeling suspension bridges. Nonlinear Anal. Theory Methods Appl. 106, 18–34, 2014

    MathSciNet  MATH  Google Scholar 

  5. Amick, C.: Existence of solutions to the nonhomogeneous steady Navier–Stokes equations. Indiana Univ. Math. J. 33(6), 817–830, 1984

    MathSciNet  MATH  Google Scholar 

  6. Amrouche, C., Rejaiba, A.: \({L}^p\)-theory for Stokes and Navier–Stokes equations with Navier boundary condition. J. Differ. Equ. 256, 1515–1547, 2014

    MATH  Google Scholar 

  7. Babuška, I., Aziz, A.: Survey lectures on the mathematical foundations of the finite element method. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Academic Press, Cambridge, 1–359, 1972

  8. Battisti, U., Berchio, E., Ferrero, A., Gazzola, F.: Energy transfer between modes in a nonlinear beam equation. J. Math. Pures Appl. 108(6), 885–917, 2017

    MathSciNet  MATH  Google Scholar 

  9. Beirão da Veiga, H.: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Differ. Equ. 9, 1079–1114, 2004

  10. Bello, J.A., Fernández-Cara, E., Lemoine, J., Simon, J.: The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier–Stokes flow. SIAM J. Control Optim. 35(2), 626–640, 1997

    MathSciNet  MATH  Google Scholar 

  11. Berger, H.M.: A new approach to the analysis of large deflections of plates. J. Appl. Mech. 22, 465–472, 1955

    MathSciNet  MATH  Google Scholar 

  12. Berselli, L.: An elementary approach to the 3D Navier–Stokes equations with Navier boundary conditions: existence and uniqueness of various classes of solutions in the flat boundary case. Discret. Contin. Dyn. Syst. Ser. S 3, 199–219, 2010

    MathSciNet  MATH  Google Scholar 

  13. Bogovskii, M.: Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248(5), 1037–1040, 1979

    MathSciNet  Google Scholar 

  14. Bresch, D.: On bounds of the drag for Stokes flow around a body without thickness. Comment. Math. Univ. Carolinae 38(4), 665–680, 1997

    MathSciNet  MATH  Google Scholar 

  15. Bègue, C., Conca, C., Murat, F., Pironneau, O.: A nouveau sur les équations de Stokes et de Navier–Stokes avec des conditions aux limites sur la pression. C. R. Acad. Sci. Sér. I Math. 304(1), 23–28, 1987

  16. Bègue, C., Conca, C., Murat, F., Pironneau, O.: Les équations de Stokes et de Navier–Stokes avec des conditions aux limites sur la pression. Nonlinear Partial Differential equations and their Applications, Collège de France Seminar, Vol. 9. Pitman, 179–264, 1988

  17. Caretto, L., Gosman, A., Patankar, S., Spalding, D.: Two calculation procedures for steady, three-dimensional flows with recirculation. Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics. Springer, Berlin, 60–68, 1973

  18. Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31, 308–340, 1961

    MathSciNet  MATH  Google Scholar 

  19. Caubet, F., Dambrine, M.: Stability of critical shapes for the drag minimization problem in Stokes flow. J. Math. Pures Appl. 100, 327–346, 2013

    MathSciNet  MATH  Google Scholar 

  20. Choi, H.J., Kweon, J.R.: The stationary Navier–Stokes system with no-slip boundary condition on polygons: corner singularity and regularity. Commun. Partial Differ. Equ. 38(7), 1235–1255, 2013

    MathSciNet  MATH  Google Scholar 

  21. Conca, C., Murat, F., Pironneau, O.: The Stokes and Navier–Stokes equations with boundary conditions involving the pressure. Jpn. J. Math. 20(2), 279–318, 1994

    MathSciNet  MATH  Google Scholar 

  22. Conca, C., San Martín, J., Tucsnak, M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ. Equ. 25(5–6), 1019–1042, 2000

    MathSciNet  MATH  Google Scholar 

  23. Costabel, M., Dauge, M.: On the inequalities of Babuška-Aziz, Friedrichs and Horgan-Payne. Arch. Ration. Mech. Anal. 217, 873–898, 2015

    MathSciNet  MATH  Google Scholar 

  24. Crasta, G., Fragalà, I., Gazzola, F.: A sharp upper bound for the torsional rigidity of rods by means of web functions. Arch. Ration. Mech. Anal. 164, 189–211, 2002

    MathSciNet  MATH  Google Scholar 

  25. Crasta, G., Fragalà, I., Gazzola, F.: On a long-standing conjecture by Pólya-Szegö and related topics. Z. Angew. Math. Physik (ZAMP) 56, 763–782, 2005

    MathSciNet  MATH  Google Scholar 

  26. Crasta, G., Gazzola, F.: Some estimates of the minimizing properties of web functions. Calculus Var. 15, 45–66, 2002

    MathSciNet  MATH  Google Scholar 

  27. del Pino, M., Dolbeault, J.: Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875, 2002

    MathSciNet  MATH  Google Scholar 

  28. Egert, M., Haller-Dintelmann, R., Rehberg, J.: Hardy’s inequality for functions vanishing on a part of the boundary. Potential Anal. 43(1), 49–78, 2015

    MathSciNet  MATH  Google Scholar 

  29. Ferreira Jr., V., Gazzola, F., Moreira dos Santos, E.: Instability of modes in a partially hinged rectangular plate. J. Differ. Equ. 261(11), 6302–6340, 2016

  30. Ferrero, A., Gazzola, F.: A partially hinged rectangular plate as a model for suspension bridges. Discret. Contin. Dyn. Syst. 35, 5879–5908, 2015

    MathSciNet  MATH  Google Scholar 

  31. Foias, C., Temam, R.: Structure of the set of stationary solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 30, 149–164, 1977

    ADS  MathSciNet  MATH  Google Scholar 

  32. Foias, C., Temam, R.: Remarques sur les équations de Navier–Stokes stationnaires et les phénomènes successifs de bifurcation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(1), 29–63, 1978

  33. Friedrichs, K.: On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. Math. 48, 441–471, 1947

    MathSciNet  MATH  Google Scholar 

  34. Fujita, H.: On stationary solutions to Navier–Stokes equation in symmetric plane domains under general outflow condition. Pitman Research Notes in Mathematics Series, 16–30, 1998

  35. Fujita, H., Morimoto, H.: A remark on the existence of steady Navier–Stokes flows in a certain two-dimensional infinite channel. Tokyo J. Math. 25(2), 307–321, 2002

    MathSciNet  MATH  Google Scholar 

  36. Fuka, V., Brechler, J.: Large eddy simulation of the stable boundary layer. Finite Volumes for Complex Applications VI—Problems and Perspectives. Springer, 485–493, 2011. http://artax.karlin.mff.cuni.cz/~fukav1am/sqcyl.html

  37. Gagliardo, E.: Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in \(n\) variabili. Rend. Sem. Mat. Univ. Padova 27, 284–305, 1957

    MathSciNet  MATH  Google Scholar 

  38. Galdi, G.: On the steady, translational self-propelled motion of a symmetric body in a Navier–Stokes fluid. Quad. Mat. II Univ. Napoli 1, 97–169, 1997

    MathSciNet  MATH  Google Scholar 

  39. Galdi, G.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems. Springer, Berlin 2011

    MATH  Google Scholar 

  40. Galdi, G., Heuveline, V.: Lift and sedimentation of particles in the flow of a viscoelastic liquid in a channel. Free and Moving Boundaries, Lecture Notes in Pure and Applied Mathematics, Vol. 252. Chapman & Hall/CRC, Boca Ratón, 75–110, 2007

  41. Galdi, G., Layton, W.: Approximation of the larger eddies in fluid motions II: a model for space-filtered flow. Math. Models Methods Appl. Sci. 10, 343–350, 2000

    MathSciNet  MATH  Google Scholar 

  42. Galdi, G., Silvestre, A.: Existence of time-periodic solutions to the Navier–Stokes equations around a moving body. Pac. J. Math. 223, 251–267, 2006

    MathSciNet  MATH  Google Scholar 

  43. Gazzola, F.: Existence of minima for nonconvex functionals in spaces of functions depending on the distance from the boundary. Arch. Ration. Mech. Anal. 150, 57–76, 1999

    MathSciNet  MATH  Google Scholar 

  44. Gazzola, F.: Mathematical Models for Suspension Bridges. MS&A, vol. 15. Springer, Berlin 2015

    MATH  Google Scholar 

  45. Gazzola, F., Sperone, G.: Navier–Stokes equations interacting with plate equations. Annual Report of the Politecnico di Milano PhD School, 2017

  46. Gazzola, F., Sperone, G.: Thresholds for hanger slackening and cable shortening in the Melan equation for suspension bridges. Nonlinear Anal. Real World Appl. 39, 520–536, 2018

    MathSciNet  MATH  Google Scholar 

  47. Gazzola, F., Sperone, G.: Boundary conditions for planar Stokes equations inducing vortices around concave corners. Milan J. Math. 87(2), 1–31, 2019

    MathSciNet  MATH  Google Scholar 

  48. Geymonat, G., Krasucki, F.: On the existence of the Airy function in Lipschitz domains. Application to the traces of \({H}^2\). C. R. Acad. Sci. I 330(5), 355–360, 2000

  49. Hopf, E.: On non-linear partial differential equations. Lecture Series of the Symposium on Partial Differential Equations. University of Kansas Press, Berkely, 1–31, 1957

  50. Horgan, C., Payne, L.: On inequalities of Korn, Friedrichs and Babuška-Aziz. Arch. Ration. Mech. Anal. 82, 165–179, 1983

    MATH  Google Scholar 

  51. Kellogg, R., Osborn, J.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21(4), 397–431, 1976

    MathSciNet  MATH  Google Scholar 

  52. Korn, A.: Über die Cosserat’schen Funktionentripel und ihre Anwendung in der Elastizitätstheorie. Acta Math. 32, 81–96, 1909

    MathSciNet  MATH  Google Scholar 

  53. Korobkov, M.V., Pileckas, K., Russo, R.: Solution of Leray’s problem for stationary Navier–Stokes equations in plane and axially symmetric spatial domains. Ann. Math. 181, 769–807, 2015

    MathSciNet  MATH  Google Scholar 

  54. Kutta, M.: Über eine mit den Grundlagen des Flugsproblems in Beziehung stehende zweidimensionale Strömung. Sitzungsberichte Bayer. Akad. Wissens. 40, 1–58, 1910

    MATH  Google Scholar 

  55. Ladyzhenskaya, O.A.: Solution "in the large" of the nonstationary boundary value problem for the Navier–Stokes system with two space variables. Commun. Pure Appl. Math. 12, 427–433, 1959

    MathSciNet  MATH  Google Scholar 

  56. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, vol. 76. Gordon and Breach, New York 1969

    MATH  Google Scholar 

  57. Ladyzhenskaya, O.A., Solonnikov, V.: Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier–Stokes equations. J. Sov. Math. 10, 257–286, 1978

    MATH  Google Scholar 

  58. Landau, L.: On the problem of turbulence. Dokl. Akad. Nauk SSSR 44, 311–314, 1944

    MathSciNet  MATH  Google Scholar 

  59. Landau, L., Lifshitz, E.: Theoretical Physics: Fluid Mechanics, vol. 6. Pergamon Press, Oxford 1987

    Google Scholar 

  60. Le Rond d’Alembert, J.: Paradoxe proposé aux géomètres sur la résistance des fluides. Opusc. Math. 5. Mém. XXXIV(I):132–138, 1768

  61. Li, L., Jiang, Z., Cai, X.: Solutions for stationary Navier–Stokes equations with non-homogeneous boundary conditions in symmetric domains of \(\mathbb{R}^n\). J. Math. Anal. Appl. 469(1), 1–15, 2019

    MathSciNet  MATH  Google Scholar 

  62. Maz’ya, V.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Springer, Berlin 2011

    MATH  Google Scholar 

  63. Morimoto, H.: A remark on the existence of 2-D steady Navier–Stokes flow in bounded symmetric domain under general outflow condition. J. Math. Fluid Mech. 9(3), 411–418, 2007

    ADS  MathSciNet  MATH  Google Scholar 

  64. Munson, B.R., Okiishi, T.H., Huebsch, W.W., Rothmayer, A.P.: Fundamentals of Fluid Mechanics. Wiley, Hoboken 2013

    Google Scholar 

  65. Navier, C.: Mémoire sur les lois du mouvement des fluides. Mém. Acéd. Sci. Inst. France 2, 389–440, 1823

    Google Scholar 

  66. Païdoussis, M.P., Price, S.J., De Langre, E.: Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press, Cambridge 2011

    MATH  Google Scholar 

  67. Parés, C.: Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43, 245–296, 1992

    MathSciNet  MATH  Google Scholar 

  68. Pironneau, O.: On optimum profiles in Stokes flow. J. Fluid Mech. 59, 117–128, 1973

    ADS  MathSciNet  MATH  Google Scholar 

  69. Pironneau, O.: On optimum design in fluid mechanics. J. Fluid Mech. 64, 97–110, 1974

    ADS  MathSciNet  MATH  Google Scholar 

  70. Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Princeton University Press, Princeton 1951

    MATH  Google Scholar 

  71. Sahin, M., Owens, R.: A numerical investigation of wall effects up to high blockage ratios on two-dimensional flow past a confined circular cylinder. Phys. Fluids 16, 1305–1320, 2004

    ADS  MATH  Google Scholar 

  72. Serrin, J.: Mathematical principles of classical fluid mechanics, pp. 125–263. Fluid Dynamics I/Strömungsmechanik I. Encyclopedia of Physics/Handbuch der Physik. Springer, Berlin 1959

    Google Scholar 

  73. Solonnikov, V., Shchadilov, V.: A certain boundary value problem for the stationary system of Navier–Stokes equations. Trudy Mat. Inst. VA Steklova 125, 196–210, 1973

    MathSciNet  Google Scholar 

  74. Szegö, G.: Über einige neue Extremaleigenschaften der Kugel. Math. Z. 33, 419–425, 1931

    MathSciNet  MATH  Google Scholar 

  75. Velte, M.: Stabilität und Verzweigung stationärer Lösungen der Navier–Stokesschen Gleichungen beim Taylorproblem. Arch. Ration. Mech. Anal. 22, 1–14, 1966

    MATH  Google Scholar 

  76. Zhukovsky, N.: On annexed vortices (in Russian). Trans. Phys. Sect. Imp. Soc. Friends Nat. Sci. Moscow 13, 12–25, 1906

Download references

Acknowledgements

This paper was initiated when both the Authors were visiting the Moscow State University in August 2018. The second Author remained in Moscow for a whole term and he is grateful to Professor Andrei Fursikov for the kind hospitality and for fruitful discussions. The first Author is partially supported by the PRIN project Direct and inverse problems for partial differential equations: theoretical aspects and applications and by the GNAMPA group of the INdAM. The final corrections of this paper were done when the second Author was already a post-doctoral researcher at the Department of Mathematical Analysis of the Charles University in Prague (Czech Republic), supported by the Primus Research Programme PRIMUS/19/SCI/01, by the program GJ19-11707Y of the Czech National Grant Agency GAČR, and by the University Centre UNCE/SCI/023 of the Charles University in Prague. The Authors warmly thank two anonymous Referees for their careful proofreading and for several suggestions that led to an improvement of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianmarco Sperone.

Additional information

Communicated by A. Figalli

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazzola, F., Sperone, G. Steady Navier–Stokes Equations in Planar Domains with Obstacle and Explicit Bounds for Unique Solvability. Arch Rational Mech Anal 238, 1283–1347 (2020). https://doi.org/10.1007/s00205-020-01565-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01565-9

Navigation