Skip to main content
Log in

Rigidity of a Non-elliptic Differential Inclusion Related to the Aviles–Giga Conjecture

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove sharp regularity for a differential inclusion into a set \(K\subset {{\mathbb {R}}}^{2\times 2}\) that arises in connection with the Aviles–Giga functional. The set K is not elliptic, and in that sense our main result goes beyond Šverák’s regularity theorem on elliptic differential inclusions. It can also be reformulated as a sharp regularity result for a critical nonlinear Beltrami equation. In terms of the Aviles–Giga energy, our main result implies that zero energy states coincide (modulo a canonical transformation) with solutions of the differential inclusion into K. This opens new perspectives towards understanding energy concentration properties for Aviles–Giga: quantitative estimates for the stability of zero energy states can now be approached from the point of view of stability estimates for differential inclusions. All these reformulations of our results are strong improvements upon a recent work by the last two authors, Lorent and Peng, where the link between the differential inclusion into K and the Aviles–Giga functional was first observed and used. Our proof relies moreover on new observations concerning the algebraic structure of entropies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astala, K., Clop, A., Faraco, D., Jääskeläinen, J., Koski, A.: Improved Hölder regularity for strongly elliptic PDEs. arXiv:1906.10906, 2019

  2. Ambrosio, L., De Lellis, C., Mantegazza, C.: Line energies for gradient vector fields in the plane. Calc. Var. Partial Differ. Equ. 9(4), 327–355, 1999

    MathSciNet  MATH  Google Scholar 

  3. Aviles, P., Giga, Y.: A mathematical problem related to the physical theory of liquid crystal configurations. In: Miniconference on Geometry and Partial Differential Equations, 2 (Canberra, 1986), Volume 12 of Proceedings of Centre for Mathematical Analysis, Australian National University, pp. 1–16. Australian National University, Canberra, 1987

  4. Aviles, P., Giga, Y.: The distance function and defect energy. Proc. R. Soc. Edinb. Sect. A126(5), 923–938, 1996

    MathSciNet  MATH  Google Scholar 

  5. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, volume 48 of Princeton Mathematical Series. Princeton University Press, Princeton 2009

    MATH  Google Scholar 

  6. Astala, K., Iwaniec, T., Saksman, E.: Beltrami operators in the plane. Duke Math. J. 107, 27–56, 2001

    MathSciNet  MATH  Google Scholar 

  7. Ambrosio, L., Kirchheim, B., Lecumberry, M., Rivière, T.: On the rectifiability of defect measures arising in a micromagnetics model. In: Nonlinear Problems in Mathematical Physics and Related Topics, II, volume 2 of International Mathematics Series (New York), pp. 29–60. Kluwer/Plenum, New York, 2002

  8. Bellettini, G., Bertini, L., Mariani, M., Novaga, M.: \(\Gamma \)-entropy cost for scalar conservation laws. Arch. Ration. Mech. Anal. 195(1), 261–309, 2010

    MathSciNet  MATH  Google Scholar 

  9. Bojarski, B., Iwaniec, T.: Quasiconformal mappings and non-linear elliptic equations in two variables. I, II. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22, 473–478, 1976

    MathSciNet  MATH  Google Scholar 

  10. Bojarski, B., Iwaniec, T.: Another approach to liouville theorem. Math. Nachr. 107, 253–262, 1982

    MathSciNet  MATH  Google Scholar 

  11. Bojarski, B.: Quasiconformal Mappings and General Structural Properties of Systems of Non linear Equations Elliptic in the Sense of Lavrentev, volume XVIII of Symposia Mathematica (Convegno sulle Transformazioni Quasiconformi e Questioni Connesse. INDAM, Rome, 1974

  12. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York 2011

    MATH  Google Scholar 

  13. Conti, S., De Lellis, C.: Sharp upper bounds for a variational problem with singular perturbation. Math. Ann. 338(1), 119–146, 2007

    MathSciNet  MATH  Google Scholar 

  14. Constantin, P., Weinan, E., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207–209, 1994

    MathSciNet  MATH  ADS  Google Scholar 

  15. De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (5)58, 842–850, 1975

    MathSciNet  MATH  Google Scholar 

  16. DiPerna, R.J.: Compensated compactness and general systems of conservation laws. Trans. Am. Math. Soc292(2), 383–420, 1985

    MathSciNet  Google Scholar 

  17. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547, 1989

    MathSciNet  MATH  ADS  Google Scholar 

  18. De Lellis, C., Ignat, R.: A regularizing property of the \(2D\)-eikonal equation. Commun. Partial Differ. Equ. 40(8), 1543–1557, 2015

    MathSciNet  MATH  Google Scholar 

  19. De Lellis, C., Otto, F.: Structure of entropy solutions to the eikonal equation. J. Eur. Math. Soc. (JEMS)5(2), 107–145, 2003

    MathSciNet  MATH  Google Scholar 

  20. DeSimone, A., Müller, S., Kohn, R.V., Otto, F.: A compactness result in the gradient theory of phase transitions. Proc. R. Soc. Edinb. Sect. A131(4), 833–844, 2001

    MathSciNet  MATH  Google Scholar 

  21. Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506, 2002

    MathSciNet  MATH  Google Scholar 

  22. Faraco, D., Kristensen, J.: Compactness versus regularity in the calculus of variations. Discrete Contin. Dyn. Syst. Ser. B17(2), 473–485, 2012

    MathSciNet  MATH  Google Scholar 

  23. Faraco, D., Zhong, X.: Geometric rigidity of conformal matrices. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(4), 557–585, 2005

    MathSciNet  MATH  Google Scholar 

  24. Gehring, F.W.: Rings and quasiconformal mappings in space. Trans. Am. Math. Soc103(3), 353–393, 1962

    MathSciNet  MATH  Google Scholar 

  25. Ghiraldin, F., Lamy, X.: Optimal Besov differentiability for entropy solutions of the eikonal equation. Comm. Pure Appl. Math. 73(2), 317–349, 2020. https://doi.org/10.1002/cpa.21868

    Article  MathSciNet  MATH  Google Scholar 

  26. Grafakos, L.: Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics, 2nd edn. Springer, New York 2008

    Google Scholar 

  27. Iwaniec, T., Martin, G.: Quasiregular mappings in even dimension. Acta Math. 170(1), 29–81, 1993

    MathSciNet  MATH  Google Scholar 

  28. Ignat, R., Merlet, B.: Entropy method for line-energies. Calc. Var. Partial Differ. Equ. 44(3–4), 375–418, 2012

    MathSciNet  MATH  Google Scholar 

  29. Iwaniec, T.: Quasiconformal mapping problem for general nonlinear systems of partial differential equations. In: Symposia Mathematica, XVIII (1976)

  30. Jin, W., Kohn, R.V.: Singular perturbation and the energy of folds. J. Nonlinear Sci. 10(3), 355–390, 2000

    MathSciNet  MATH  ADS  Google Scholar 

  31. Jabin, P.-E., Otto, F., Perthame, B.: Line-energy Ginzburg-Landau models: zero-energy states. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)1(1), 187–202, 2002

    MathSciNet  MATH  Google Scholar 

  32. Liouville, J.: Theoreme sur l’equation \(dx^2+dy^2+dz^2=\lambda (d\alpha ^2+d\beta ^2+d \gamma ^2)\). J. Math. Pures Appl. 1(15), 103, 1850

    Google Scholar 

  33. Lamy, X., Otto, F.: On the regularity of weak solutions to burgers’ equation with finite entropy production. Calc. Var. Partial Differ. Equ. 57(4), 94, 2018

    MathSciNet  MATH  Google Scholar 

  34. Lorent, A.: Differential inclusions, non-absolutely convergent integrals and the first theorem of complex analysis. Q. J. Math. 65(4), 15, 2014

    MathSciNet  MATH  Google Scholar 

  35. Lorent, A.: A quantitative characterisation of functions with low aviles giga energy on convex domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. 13(5), 187–202, 2014

    MathSciNet  MATH  Google Scholar 

  36. Lorent, A., Peng, G.: Regularity of the Eikonal equation with two vanishing entropies. Ann. Inst. H. Poincaré Anal. Non Linéaire35(2), 481–516, 2018

    MathSciNet  MATH  ADS  Google Scholar 

  37. Marconi, E.: On the structure of weak solutions to scalar conservation laws with finite entropy production. arXiv:1909.07257.

  38. Modica, L., Mortola, S.: Un esempio di \(\Gamma ^{-}\)-convergenza. Boll. Un. Mat. Ital. B (5), 14(1), 285–299, 1977

  39. Müller, S., Rieger, M., Šverák, V.: Parabolic systems with nowhere smooth solutions. Arch. Ration. Mech. Anal. 177(1), 1–20, 2005

    MathSciNet  MATH  Google Scholar 

  40. Müller, S., Šverák, V.: Convex integration for lipschitz mappings and counterexamples to regularity. Ann. Math. 9(3), 715–742, 2003

    MathSciNet  MATH  Google Scholar 

  41. Müller, S., Šverák, V., Yan, B.: Sharp stability results for almost conformal maps in even dimension. J. Geom. Anal. 9(4), 671, 1999

    MathSciNet  MATH  Google Scholar 

  42. Poliakovsky, A.: Upper bounds for singular perturbation problems involving gradient fields. J. Eur. Math. Soc. (JEMS)9(1), 1–43, 2007

    MathSciNet  MATH  Google Scholar 

  43. Reshetnyak, Yu.G.: Liouville’s conformal mapping theorem under minimal regularity hypotheses (Russian). Sibirsk. Mat.Ž, 8, 835–840, 1967

  44. Rivière, T., Serfaty, S.: Limiting domain wall energy for a problem related to micromagnetics. Commun. Pure Appl. Math. 54(3), 294–338, 2001

    MathSciNet  MATH  Google Scholar 

  45. Rivière, T., Serfaty, S.: Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Commun. Partial Differ. Equ. 28(1–2), 249–269, 2003

    MathSciNet  MATH  Google Scholar 

  46. Szekelyhidi Jr., L.: The regularity of critical points of polyconvex functionals. Arch. Ration. Mech. Anal. 172(1), 133–152, 2004

    MathSciNet  MATH  Google Scholar 

  47. Šverák, V.: On Tartar’s conjecture. Ann. Inst. H. Poincaré Anal. Non Linéaire, 10(4), 405–412, 1993

  48. Triebel, H.: Theory of Function Spaces III, volume 100 of Monographs in Mathematics. Birkhäuser Verlag, Basel 2006

    Google Scholar 

  49. Zygmund, A.: Trigonometric Series. Vol. I, II. Cambridge Mathematical Library, 3rd edn. Cambridge University Press, Cambridge (With a foreword by Robert A. Fefferman), 2002

Download references

Acknowledgements

We warmly thank the anonymous referee for suggesting significant simplifications, in particular pointing out that one of our key arguments could be directly formulated in terms of the Hilbert transform without resorting to superfluous intermediate steps. A.L. gratefully acknowledges the support of the Simons foundation, collaboration Grant #426900. X.L. was supported in part by ANR Project ANR-18-CE40-0023 and COOPINTER Project IEA-297303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Lamy.

Additional information

Communicated by S. Serfaty

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Commutator Estimate

In this appendix we prove the following basic commutator estimate:

Lemma 17

Given \(\Pi \in C^{2}({{\mathbb {R}}}^2)\) and \(m:\Omega \rightarrow {{\mathbb {R}}}^2\) with \({\left| m\right| }\leqq R\) a.e. for some \(0<R<\infty \), we have

(54)

Proof of Lemma 17

The proof follows computations presented in [14] and recently in a context closer to ours also in [18]. We write out

$$\begin{aligned}&\left[\Pi (m)\right]_{\varepsilon }(x) -\Pi (m_{\varepsilon }(x))\nonumber \\&= \int \left(\Pi (m(x-z))-\Pi (m_{\varepsilon }(x))\right)\rho _{\varepsilon }(z)\,\mathrm{d}z\nonumber \\&=\int D\Pi (m(x-z))\cdot \left(m(x-z)-m_{\varepsilon }(x)\right)\rho _{\varepsilon }(z)\,\mathrm{d}z\nonumber \\&\quad +\int \left(\Pi (m(x-z))-\Pi (m_{\varepsilon }(x)) - D\Pi (m(x-z))\cdot \left(m(x-z)-m_{\varepsilon }(x)\right)\right)\rho _{\varepsilon }(z)\,\mathrm{d}z\nonumber \\&=\int \left(D\Pi (m(x-z))-D\Pi (m_{\varepsilon }(x))\right)\cdot \left(m(x-z)-m_{\varepsilon }(x)\right)\rho _{\varepsilon }(z)\,\mathrm{d}z\nonumber \\&\quad +\int \left(\Pi (m(x-z))-\Pi (m_{\varepsilon }(x)) - D\Pi (m(x-z))\cdot \left(m(x-z)-m_{\varepsilon }(x)\right)\right)\rho _{\varepsilon }(z)\,\mathrm{d}z. \end{aligned}$$
(55)

By Taylor expansion we have

$$\begin{aligned}&|\Pi (m(x-z))-\Pi (m_{\varepsilon }(x)) - D\Pi (m(x-z))\cdot \left(m(x-z)-m_{\varepsilon }(x)\right)| \\&\quad \quad \lesssim {\Vert D^2\Pi \Vert }_{L^\infty }|m(x-z)-m_{\varepsilon }(x)|^2, \\&\left|\left(D\Pi (m(x-z))-D\Pi (m_{\varepsilon }(x))\right)\cdot \left(m(x-z)-m_{\varepsilon }(x)\right) \right|\\&\quad \quad \lesssim {\Vert D^2\Pi \Vert }_{L^\infty } \left|m(x-z)-m_{\varepsilon }(x)\right|^2, \end{aligned}$$

and plugging this into (55), we get

$$\begin{aligned} |\left[\Pi (m)\right]_{\varepsilon }(x)-\Pi (m_{\varepsilon }(x))|\lesssim {\Vert D^2\Pi \Vert }_{L^\infty }\int _{B_{\varepsilon }(0)}|m(x-z)-m_{\varepsilon }(x)|^2\rho _{\varepsilon }(z)\,\mathrm{d}z.\nonumber \\ \end{aligned}$$
(56)

Moreover, by Jensen’s inequality, we have

Plugging this estimate into (56) gives (54). \(\quad \square \)

Computations Needed in the Proof of Lemma 15

Lemma 18

Let \(\varphi \in C^3({{\overline{B}}}_1)\) such that \(\Delta \varphi =0\) in \(B_1\) and \(\Phi ^{\varphi }\) the corresponding harmonic entropy given by

$$\begin{aligned} \Phi ^{\varphi }(z)=\varphi (z)z+((iz)\cdot \nabla \varphi (z))iz\qquad \forall z\in {{\overline{B}}}_1. \end{aligned}$$
(57)

For any smooth map \(w:\Omega \rightarrow {{\overline{B}}}_1\) we have

$$\begin{aligned} {{\,\mathrm{div}\,}}\Phi ^{\varphi }(w)&=A(w){{\,\mathrm{div}\,}}w + {{\,\mathrm{div}\,}}(({\left| w\right| }^2-1)B(w)) \\&\quad + \partial _2 B_1(w){{\,\mathrm{div}\,}}\Sigma _1(w) -\partial _1 B_1(w) {{\,\mathrm{div}\,}}\Sigma _2(w), \end{aligned}$$

where \(A=A^\varphi :{{\overline{B}}}_1\rightarrow {{\mathbb {R}}}\) and \(B=B^\varphi :{{\overline{B}}}_1\rightarrow {{\mathbb {R}}}^2\) are given by

$$\begin{aligned} A^\varphi (z)&=\varphi (z) -z_1\partial _1\varphi (z) - z_2\partial _2\varphi (z) \nonumber \\&\quad + z_1z_2 \Big [ \partial _{12}\varphi (z)- z_2\partial _{111}\varphi (z) + z_1\partial _{211}\varphi (z)\Big ] \nonumber \\&\quad +\frac{1}{2} (z_1^2-z_2^2)\Big [ \partial _{11}\varphi (z) + z_2\partial _{112}\varphi (z) + z_1\partial _{111}\varphi (z) \Big ], \end{aligned}$$
(58)
$$\begin{aligned} B^\varphi (z)&=\left( \begin{array}{c} \partial _1\varphi (z) +\frac{1}{2} z_2\partial _{12}\varphi (z)-\frac{1}{2} z_1\partial _{22}\varphi (z)\\ \partial _2\varphi (z) -\frac{1}{2} z_2\partial _{11}\varphi (z)+\frac{1}{2} z_1\partial _{12}\varphi (z) \end{array} \right) . \end{aligned}$$
(59)

Proof of Lemma 18

We have

$$\begin{aligned} \Phi ^{\varphi }(w)\overset{(57)}{=}\left(\begin{array}{c} w_1 \varphi -w_2 \left(-w_2 \partial _1 \varphi +w_1 \partial _2 \varphi \right)\\ w_2 \varphi +w_1 \left(-w_2 \partial _1 \varphi +w_1 \partial _2 \varphi \right) \end{array}\right), \end{aligned}$$

so

$$\begin{aligned}&{{\,\mathrm{div}\,}}\Phi ^{\varphi }(w)\nonumber \\&\quad = w_1 \partial _1 \varphi \partial _1 w_1+ w_1 \partial _2 \varphi \partial _1 w_2+\varphi \partial _1 w_1\nonumber \\&\quad \quad -\left(-w_2 \partial _1 \varphi + w_1 \partial _2 \varphi \right) \partial _1 w_2\nonumber \\&\quad \quad -w_2\left( -\partial _1 \varphi \partial _1 w_2- w_2 \partial _{11} \varphi \partial _1 w_1- w_2 \partial _{12} \varphi \partial _1 w_2\right.\nonumber \\&\quad \quad \quad \quad \quad \left.+\partial _2 \varphi \partial _1 w_1+ w_1 \partial _{12} \varphi \partial _1 w_1+ w_1 \partial _{22} \varphi \partial _1 w_2\right)\nonumber \\&\quad \quad + w_2 \partial _1 \varphi \partial _2 w_1+ w_2 \partial _2 \varphi \partial _2 w_2+\varphi \partial _2 w_2\nonumber \\&\quad \quad +\left(-w_2 \partial _1 \varphi + w_1 \partial _2 \varphi \right) \partial _2 w_1\nonumber \\&\quad \quad + w_1\left( -\partial _1 \varphi \partial _2 w_2- w_2 \partial _{11} \varphi \partial _2 w_1- w_2 \partial _{12} \varphi \partial _2 w_2\right.\nonumber \\&\quad \quad \quad \quad \quad \left.+\partial _2 \varphi \partial _2 w_1+ w_1 \partial _{12} \varphi \partial _2 w_1+ w_1 \partial _{22} \varphi \partial _2 w_2\right)\nonumber \\&\quad = \left(\varphi +w_1 \partial _1 \varphi - w_2 \partial _2 \varphi +w_2^2 \partial _{11} \varphi - w_1 w_2 \partial _{12} \varphi \right) \partial _1 w_1\nonumber \\&\quad \quad + \left(\varphi +w_2 \partial _2 \varphi - w_1 \partial _1 \varphi +w_1^2 \partial _{22} \varphi - w_1 w_2 \partial _{12} \varphi \right) \partial _2 w_2\nonumber \\&\quad \quad +\left(w_1 \partial _2 \varphi + w_2 \partial _1 \varphi -w_1 \partial _2 \varphi +w_2^2 \partial _{12} \varphi - w_1 w_2 \partial _{22} \varphi +w_2 \partial _1 \varphi \right) \partial _1 w_2\nonumber \\&\quad \quad +\left(w_2 \partial _1 \varphi - w_2 \partial _1 \varphi +w_1 \partial _2 \varphi -w_1 w_2 \partial _{11} \varphi + w_1^2 \partial _{12} \varphi + w_1 \partial _2 \varphi \right) \partial _2 w_1\nonumber \\&\quad = \left(\varphi +w_1 \partial _1 \varphi - w_2 \partial _2 \varphi +w_2^2 \partial _{11} \varphi - w_1 w_2 \partial _{12} \varphi \right) \partial _1 w_1\nonumber \\&\quad \quad + \left(\varphi +w_2 \partial _2 \varphi - w_1 \partial _1 \varphi +w_1^2 \partial _{22} \varphi - w_1 w_2 \partial _{12} \varphi \right) \partial _2 w_2\nonumber \\&\quad \quad +\left(2\partial _1 \varphi +w_2 \partial _{12} \varphi - w_1 \partial _{22} \varphi \right) w_2 \partial _1 w_2\nonumber \\&\quad \quad +\left(2\partial _2 \varphi -w_2 \partial _{11} \varphi + w_1 \partial _{12} \varphi \right) w_1 \partial _2 w_1. \end{aligned}$$
(60)

Noting that

$$\begin{aligned} \partial _1 \left(\frac{\left|w\right|^2}{2}\right)-w_1 \partial _1 w_1=w_2 \partial _1 w_2\quad \text { and }\quad \partial _2 \left(\frac{\left|w\right|^2}{2}\right)-w_{2} \partial _2 w_2=w_1 \partial _2 w_1, \end{aligned}$$

and plugging this into (60),

$$\begin{aligned}&{{\,\mathrm{div}\,}}\Phi ^{\varphi }(w)\nonumber \\&\quad = \left(\varphi +w_1 \partial _1 \varphi - w_2 \partial _2 \varphi +w_2^2 \partial _{11} \varphi - w_1 w_2 \partial _{12} \varphi \right.\nonumber \\&\quad \quad \quad \quad \left. -2 w_1 \partial _1 \varphi -w_1 w_2 \partial _{12} \varphi +w_1^2 \partial _{22} \varphi \right) \partial _1 w_1\nonumber \\&\quad \quad + \left(\varphi +w_2 \partial _2 \varphi - w_1 \partial _1 \varphi +w_1^2 \partial _{22} \varphi - w_1 w_2 \partial _{12} \varphi \right.\nonumber \\&\quad \quad \quad \quad \left. -2 w_2 \partial _2 \varphi -w_1 w_2 \partial _{12} \varphi +w_2^2 \partial _{11} \varphi \right) \partial _2 w_2\nonumber \\&\quad \quad + \left(\partial _1 \varphi +\frac{1}{2} w_2 \partial _{12} \varphi - \frac{1}{2} w_1 \partial _{22} \varphi \right)\partial _1 \left(\left|w\right|^2\right)\nonumber \\&\quad \quad + \left(\partial _2 \varphi -\frac{1}{2} w_2 \partial _{11} \varphi + \frac{1}{2} w_1 \partial _{12} \varphi \right)\partial _2 \left(\left|w\right|^2\right)\nonumber \\&\quad =\left(\varphi -w_1 \partial _1 \varphi -w_2 \partial _2 \varphi +w_1^2 \partial _{22} \varphi +w_2^2 \partial _{11} \varphi -2 w_1 w_2\partial _{12} \varphi \right) {{\,\mathrm{div}\,}}w\nonumber \\&\quad \quad + \left(\partial _1 \varphi +\frac{1}{2} w_2 \partial _{12} \varphi - \frac{1}{2} w_1 \partial _{22} \varphi \right)\partial _1 \left(\left|w\right|^2\right)\nonumber \\&\quad \quad + \left(\partial _2 \varphi -\frac{1}{2} w_2 \partial _{11} \varphi + \frac{1}{2} w_1 \partial _{12} \varphi \right)\partial _2 \left(\left|w\right|^2\right) \nonumber \\&\quad = C(w){{\,\mathrm{div}\,}}w + B(w)\cdot \nabla ({\left| w\right| }^2), \end{aligned}$$
(61)

where \(B=B^\varphi \) is as in (59) and

$$\begin{aligned} C(z)=\varphi -z_1 \partial _1 \varphi -z_2 \partial _2 \varphi +z_1^2 \partial _{22} \varphi +z_2^2 \partial _{11} \varphi -2 z_1 z_2\partial _{12} \varphi . \end{aligned}$$
(62)

We rewrite (61) as

$$\begin{aligned} {{\,\mathrm{div}\,}}\Phi ^{\varphi }(w)&=C(w) {{\,\mathrm{div}\,}}w+ {{\,\mathrm{div}\,}}\left(\left(\left|w\right|^2-1\right)B(w)\right)\nonumber \\&\quad +\left(\partial _1 B_1 \partial _1 w_1+ \partial _2 B_1 \partial _1 w_2+ \partial _1 B_2 \partial _2 w_1+ \partial _2 B_2 \partial _2 w_2 \right)\left( 1-\left|w\right|^2\right). \end{aligned}$$
(63)

Note that

$$\begin{aligned} \partial _1 B_1&=\partial _{11} \varphi +\frac{1}{2} z_2 \partial _{112} \varphi - \frac{1}{2} \partial _{22}\varphi -\frac{1}{2} z_{1}\partial _{221} \varphi , \end{aligned}$$
(64)
$$\begin{aligned} \partial _2 B_2&=\partial _{22} \varphi -\frac{1}{2} z_2 \partial _{112} \varphi - \frac{1}{2} \partial _{11} \varphi +\frac{1}{2} z_{1}\partial _{221} \varphi , \nonumber \\ \text {so }\quad&\partial _1 B_1+\partial _2 B_2=\frac{1}{2}\Delta \varphi , \end{aligned}$$
(65)

and

$$\begin{aligned} \partial _2 B_1&=\frac{3}{2}\partial _{12} \varphi +\frac{1}{2}z_2 \partial _{122} \varphi -\frac{1}{2}z_1 \partial _{222} \varphi , \end{aligned}$$
(66)
$$\begin{aligned} \partial _1 B_2&=\frac{3}{2}\partial _{12} \varphi -\frac{1}{2}z_2 \partial _{111} \varphi +\frac{1}{2}z_1 \partial _{112} \varphi ,\nonumber \\ \text {so }\quad&\partial _2 B_1-\partial _1 B_2=\frac{1}{2}z_2\left(\partial _1 \Delta \varphi \right)-\frac{1}{2}z_1\left(\partial _2 \Delta \varphi \right). \end{aligned}$$
(67)

Since \(\varphi \) is harmonic we have from (65) and (67) that

$$\begin{aligned} \partial _1 B_1+\partial _2 B_2=0\quad \text { and }\quad \partial _2 B_1-\partial _1 B_2=0. \end{aligned}$$
(68)

Recalling moreover the explicit expressions of \({{\,\mathrm{div}\,}}\Sigma _j(w)\) computed in (25), (26), we find that (63) can be rewritten as

$$\begin{aligned} {{\,\mathrm{div}\,}}\Phi ^{\varphi }(w)&\overset{(68), (63)}{=} C(w) {{\,\mathrm{div}\,}}w+ {{\,\mathrm{div}\,}}\left(\left(\left|w\right|^2-1\right)B(w)\right)\nonumber \\&\quad +\partial _1 B_1\left(\partial _1 w_1-\partial _2 w_2\right)\left(1-\left|w\right|^2\right)\nonumber \\&\quad +\partial _2 B_1\left(\partial _1 w_2+\partial _2 w_1\right)\left(1-\left|w\right|^2\right)\nonumber \\&\overset{(25)-(26)}{=}C(w) {{\,\mathrm{div}\,}}w+ {{\,\mathrm{div}\,}}\left(\left(\left|w\right|^2-1\right)B(w)\right)\nonumber \\&\quad -\partial _1 B_1\left({{\,\mathrm{div}\,}}\Sigma _2(w)-(w_1^2-w_2^2){{\,\mathrm{div}\,}}w\right)\nonumber \\&\quad +\partial _2 B_1\left({{\,\mathrm{div}\,}}\Sigma _1(w)+2w_1 w_2{{\,\mathrm{div}\,}}w\right)\nonumber \\&=A(w){{\,\mathrm{div}\,}}w+{{\,\mathrm{div}\,}}\left(\left(\left|w\right|^2-1\right)B\right)\nonumber \\&\quad +\partial _2 B_1 {{\,\mathrm{div}\,}}\Sigma _1(w)-\partial _1 B_1 {{\,\mathrm{div}\,}}\Sigma _2(w), \end{aligned}$$
(69)

where

$$\begin{aligned} A(w)&=C(w)+2\partial _2 B_1 w_1 w_2+\partial _1 B_1 \left(w_1^2-w_2^2\right)\\&\overset{(62), (66), (64)}{=}\varphi -w_1 \partial _1 \varphi -w_2 \partial _2 \varphi +w_1^2 \partial _{22} \varphi +w_2^2 \partial _{11} \varphi -2 w_1 w_2\partial _{12}\varphi \\&\quad +2w_1 w_2\left(\frac{3}{2}\partial _{12} \varphi +\frac{1}{2}w_2 \partial _{122} \varphi -\frac{1}{2}w_1 \partial _{222} \varphi \right)\\&\quad +\left(w_1^2-w_2^2\right)\left(\partial _{11} \varphi +\frac{1}{2} w_2 \partial _{112} \varphi - \frac{1}{2} \partial _{22}\varphi -\frac{1}{2} w_{1}\partial _{221} \varphi \right)\\&=\varphi -w_1 \partial _1 \varphi -w_2 \partial _2 \varphi \\&\quad +2w_1 w_2\left(\frac{1}{2}\partial _{12} \varphi +\frac{1}{2}w_2 \partial _{122} \varphi -\frac{1}{2}w_1 \partial _{222} \varphi \right)\\&\quad +\left(w_1^2-w_2^2\right)\left(\frac{1}{2}\partial _{11} \varphi +\frac{1}{2} w_2 \partial _{112} \varphi -\frac{1}{2} w_{1}\partial _{221} \varphi \right). \end{aligned}$$

This expression agrees with (58) because \(\Delta \varphi =0\), so (69) proves Lemma 18. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamy, X., Lorent, A. & Peng, G. Rigidity of a Non-elliptic Differential Inclusion Related to the Aviles–Giga Conjecture. Arch Rational Mech Anal 238, 383–413 (2020). https://doi.org/10.1007/s00205-020-01545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01545-z

Navigation