Skip to main content
Log in

Energy Minimization of Two Dimensional Incommensurate Heterostructures

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We derive and analyze a novel approach for modeling and computing the mechanical relaxation of incommensurate two dimensional heterostructures. Our approach parametrizes the relaxation pattern by the compact local configuration space rather than real space, thus bypassing the need for the standard supercell approximation and giving a true aperiodic atomistic configuration. Our model extends the computationally accessible regime of weakly coupled bilayers with similar orientations or lattice spacing, for example materials with a small relative twist where the widely studied large-scale moiré patterns arise (Kim et al. in Proc Natl Acad Sci 114:3364–3369, 2017; Yoo et al. in Atomic and electronic reconstruction at van der Waals interface in twisted bilayer graphene, Nat Mater 18:448–453, 2019). Our model also makes possible the simulation of multi-layers for which no inter-layer empirical atomistic potential exists, such as those composed of \(\hbox {MoS}_2\) layers, and more generally makes possible the simulation of the relaxation of multi-layer heterostructures for which a planar moiré pattern does not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A configuration is rigorously defined as the position of all atoms in the system relative to the origin, given an arbitrary translation of the system corresponding to a change of viewpoint, typically encoded as a Radon measure in \(\mathfrak {M}(\mathbb {R}^3)\). Formally, the hull is a dynamical system \((\Omega , \mathbb {R}^2, \mathtt {T})\) where \(\Omega \) is the closure of the orbit of the atomic distribution generated by the atoms of all p layers under the action of \(\mathbb {R}^2\) through \(\mathtt {T}\). Note that the group of translations \(\mathtt {T}_\mathbf {a}\) with \(\mathbf {a}\in \mathbb {R}^2\) acts on the space of compactly supported continuous functions \(\mathcal {C}_c(\mathbb {R}^3)\) naturally through \(\mathtt {T}_\mathbf {a}f(\mathbf {x}) = f(\mathbf {x}- \mathbf {a})\), and thus on the space of Radon measures \(\mathfrak {M}(\mathbb {R}^3)\) through \(\mathtt {T}_\mathbf {a}\mu (f) = \mu (\mathtt {T}_{-\mathbf {a}} f)\).

  2. Note that interlayer coupling used in the computation leading to Figure 1 was artifically enhanced by a factor of 100 with respect to the coefficients in 1 such that the scales of both unit and moiré cells are visible while still ensuring significant relaxation.

References

  1. Aubry, S., Le Daeron, P.: The discrete Frenkel–Kontorova model and its extensions. I. Exact results for the ground-states. Physica D8, 381–422, 1983

    Article  ADS  MathSciNet  Google Scholar 

  2. Bellissard, J.: Coherent and Dissipative Transport in Aperiodic Solids. Lecture Notes in Physics, vol. 597, pp. 413–486. Springer, Berlin 2003

    MATH  Google Scholar 

  3. Bellissard, J., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373–5451, 1994

    Article  ADS  MathSciNet  Google Scholar 

  4. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98, 2017

    Article  MathSciNet  Google Scholar 

  5. Blanc, X., Le Bris, C., Lions, P.-L.: Atomistic to continuum limits for computational materials science. ESAIM Math. Model. Numer. Anal. 41, 391–426, 2007

    Article  MathSciNet  Google Scholar 

  6. Cancès, E., Cazeaux, P., Luskin, M.: Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures. J. Math. Phys. 58, 063502, 2017

    Article  ADS  MathSciNet  Google Scholar 

  7. Cao, Y., Fatemi, V., Demir, A., Fang, S., Tomarken, S.L., Luo, J.Y., Sanchez-Yamagishi, J.D., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P.: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature556, 80–84, 2018

    Article  ADS  Google Scholar 

  8. Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., Jarillo-Herrero, P.: Unconventional superconductivity in magic-angle graphene superlattices. Nature556, 43–50, 2018

    Article  ADS  Google Scholar 

  9. Carr, S., Fang, S., Zhu, Z., Kaxiras, E.: Minimal model for low-energy electronic states of twisted bilayer graphene. 2019 arXiv preprint arXiv:1901.03420

  10. Carr, S., Massatt, D., Fang, S., Cazeaux, P., Luskin, M., Kaxiras, E.: Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B95, 075420, 2017

    Article  ADS  Google Scholar 

  11. Carr, S., Massatt, D., Torrisi, S.B., Cazeaux, P., Luskin, M., Kaxiras, E.: Relaxation and domain formation in incommensurate 2D heterostructures. 2018 arXiv preprint arXiv:1805.06972

  12. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109, 2009

    Article  ADS  Google Scholar 

  13. Cazeaux, P., Luskin, M., Tadmor, E.B.: Analysis of rippling in incommensurate one-dimensional coupled chains. Multiscale Model. Simul. 15, 56–73, 2017

    Article  MathSciNet  Google Scholar 

  14. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications, vol. 130. SIAM, Philadelphia 2013

    MATH  Google Scholar 

  15. Constantinescu, G., Kuc, A., Heine, T.: Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 111, 036104, 2013

    Article  ADS  Google Scholar 

  16. Dacorogna, B.: Direct Methods in the Calculus of Variations, vol. 78. Springer, Berlin 2007

    MATH  Google Scholar 

  17. Dai, S., Xiang, Y., Srolovitz, D.J.: Twisted bilayer graphene: moiré with a twist. Nano Lett. 16, 5923–5927, 2016

    Article  ADS  Google Scholar 

  18. Español, M.I., Golovaty, D., Wilber, J.P.: Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 474, 2018

    Article  ADS  MathSciNet  Google Scholar 

  19. Evans, L.C.: Partial Differential Equations. Springer Series in Computational Physics, 2nd edn. American Mathematical Society, Providence 2010

    Google Scholar 

  20. Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature499, 419–425, 2013

    Article  Google Scholar 

  21. Gong, X., Mele, E.: Stacking textures and singularities in bilayer graphene. Phys. Rev. B89, 121415, 2014

    Article  ADS  Google Scholar 

  22. Kim, K., DaSilva, A., Huang, S., Fallahazad, B., Larentis, S., Taniguchi, T., Watanabe, K., LeRoy, B.J., MacDonald, A.H., Tutuc, E.: Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. 114, 3364–3369, 2017

    Article  ADS  Google Scholar 

  23. Kolmogorov, A.N., Crespi, V.H.: Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes. Phys. Rev. Lett. 85, 4727, 2000

    Article  ADS  Google Scholar 

  24. Marom, N., Bernstein, J., Garel, J., Tkatchenko, A., Joselevich, E., Kronik, L., Hod, O.: Stacking and registry effects in layered materials: the case of hexagonal boron nitride. Phys. Rev. Lett. 105, 046801, 2010

    Article  ADS  Google Scholar 

  25. Massatt, D., Luskin, M., Ortner, C.: Electronic density of states for incommensurate layers. Multiscale Model. Simul. 15, 476–499, 2017

    Article  MathSciNet  Google Scholar 

  26. Nam, N.N., Koshino, M.: Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B96, 075311, 2017

    Article  ADS  Google Scholar 

  27. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science306, 666–669, 2004

    Article  ADS  Google Scholar 

  28. Ortner, C.: A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1d. Math. Comput. 80, 1265–1285, 2011

    Article  MathSciNet  Google Scholar 

  29. Ortner, C., Theil, F.: Justification of the Cauchy–Born approximation of elastodynamics. Arch. Ration. Mech. Anal. 207, 1025–1073, 2013

    Article  MathSciNet  Google Scholar 

  30. Prodan, E.: Quantum transport in disordered systems under magnetic fields: a study based on operator algebras. Appl. Math. Res. eXpress176–265, 2013, 2013

    MATH  Google Scholar 

  31. Su, X., de la Llave, R.: A continuous family of equilibria in ferromagnetic media are ground states. Commun. Math. Phys. 354, 459–475, 2017

    Article  ADS  MathSciNet  Google Scholar 

  32. Tritsaris, G.A., Shirodkar, S.N., Kaxiras, E., Cazeaux, P., Luskin, M., Plecháč, P., Cancès, E.: Perturbation theory for weakly coupled two-dimensional layers. J. Mater. Res. 31, 959–966, 2016

    Article  ADS  Google Scholar 

  33. Van Koten, B., Ortner, C.: Symmetries of 2-lattices and second order accuracy of the Cauchy–Born model. Multiscale Model. Simul. 11, 615–634, 2013

    Article  MathSciNet  Google Scholar 

  34. van Wijk, M.M., Schuring, A., Katsnelson, M.I., Fasolino, A.: Relaxation of moiré patterns for slightly misaligned identical lattices: graphene on graphite. 2D Mater. 2, 034010, 2015

    Article  Google Scholar 

  35. Vitek, V.: Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag. 18, 773–786, 1968

    Article  ADS  Google Scholar 

  36. Wen, M., Carr, S., Fang, S., Kaxiras, E., Tadmor, E.B.: Dihedral-angle-corrected registry-dependent interlayer potential for multilayer graphene structures. Phys. Rev. B98, 235404, 2018

    Article  ADS  Google Scholar 

  37. Yoo, H., Engelke, R., Carr, S., Fang, S., Zhang, K., Cazeaux, P., Sung, S.H., Hovden, R., Tsen, A.W., Taniguchi, T., Watanabe, K., Yi, G.-C., Kim, M., Luskin, M., Tadmor, E.B., Kaxiras, E., Kim, P.: Atomic and electronic reconstruction at van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453, 2019

    Article  ADS  Google Scholar 

  38. Zhang, K., Tadmor, E.B.: Energy and moiré patterns in 2D bilayers in translation and rotation: a study using an efficient discrete–continuum interlayer potential. Extreme Mech. Lett. 14, 16–22, 2017

    Article  Google Scholar 

  39. Zhou, S., Han, J., Dai, S., Sun, J., Srolovitz, D.J.: Van der Waals bilayer energetics: generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers. Phys. Rev. B92, 155438, 2015

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by ARO MURI Award W911NF-14-1-0247 and by the National Science Foundation under NSF Award DMS-1819220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Luskin.

Additional information

A. Braides.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Prop. 3.2

Appendix A. Proof of Prop. 3.2

In this appendix, we detail the technical proof of Proposition 3.2, which we recall first for ease of reading.

Proposition A.1

Let \(\mathbf {u}\in W^{2,q}(X)\), then

$$\begin{aligned} \left\| \widehat{\mathbf {u}}_j - \widetilde{\mathbf {u}}_j \right\| _{L^q(\Omega )} \leqq \left( \frac{\vert \Gamma _j \vert }{2q+1} \right) ^{1/q} \theta ^2 \; \left\| \nabla ^2_\omega \mathbf {u}_j \right\| _{L^q(X_j)}, \end{aligned}$$
(A.1)

where is the subset of the transversal corresponding to lattice sites of layer j, \(\nabla ^2_\omega \mathbf {u}_j\) is understood as a 2-linear form for which the norm is defined as \(\Vert \ell \Vert := \sup _{\vert \mathbf {h}_1 \vert = \vert \mathbf {h}_2 \vert = 1 } \left| \ell [\mathbf {h}_1, \mathbf {h}_2] \right| \) and

$$\begin{aligned} \theta = \sqrt{p} \sup _{1 \leqq i,j \leqq p} \left\| \mathrm {E}_i - \mathrm {E}_j \right\| , \qquad \text {where } \Vert \cdot \Vert \text { denotes the } \mathbb {R}^2\text {-operator norm}. \end{aligned}$$
(A.2)

Proof

It is natural to relate this result to local finite element interpolant error estimation and follow similar steps. Let \(\omega \in \Omega \) be an arbitrary configuration, j be an arbitrary layer number. Consider a Taylor expansion up to degree 1 of \(\mathbf {u}_j\) around the point \(\Pi _j\omega \):

$$\begin{aligned} T^1_\omega \mathbf {u}_j(\delta \omega ) = \mathbf {u}_j \left( \Pi _j \omega \right) + \nabla _\omega \mathbf {u}_j \left( \Pi _j \omega \right) \cdot \delta \omega \text { where } \delta \omega = (\varvec{\delta \omega }_1, \ldots , \varvec{\delta \omega }_p) \in \mathbb {R}^{2p},\ \varvec{\delta \omega }_j = \varvec{0}. \end{aligned}$$

Using the integral formula for the residual of the Taylor series, we have

$$\begin{aligned} \mathbf {u}_j(\Pi _j \omega + \delta \omega ) - T^1_\omega \mathbf {u}_j(\delta \omega )&= \int \nolimits _0^1 \frac{(1-h)^2}{2}\frac{d^2\mathbf {u}_j}{dh^2} (\Pi _j \omega + h \delta \omega )\,\mathrm{d} h\\&= \int \nolimits _0^1 \frac{(1-h)^2}{2} \nabla _\omega ^2 \mathbf {u}_j (\Pi _j \omega + h \delta \omega ) [\delta \omega , \delta \omega ] \,\mathrm{d} h, \end{aligned}$$

so by Jensen’s inequality we obtain the estimate

$$\begin{aligned} \Vert \mathbf {u}_j(\Pi _j \omega + \delta \omega ) - T^1_\omega \mathbf {u}_j(\delta \omega ) \Vert ^q \leqq \Vert \delta \omega \Vert ^{2q} \int \nolimits _0^1 \frac{(1-h)^{2q}}{2^q} \left\| \nabla _\omega ^2 \mathbf {u}_j (\Pi _j \omega + h \delta \omega ) \right\| ^q \,\mathrm{d} h. \end{aligned}$$
(A.3)

As earlier (see (3.2)), let us write \(\varvec{\gamma }_j = \mathrm {E}_j \begin{bmatrix} s \\ t \end{bmatrix}\) with \(0 \leqq s, t < 1\). The lattice sites in layer j around the origin are located at the four points \(\mathbf {r}_{ab}\) with \(a, b \in \{ 0,1 \}\) defined as in (2.12). One checks easily from the definition (3.4) that

$$\begin{aligned} \mathtt {T}_{-\mathbf {r}_{ab}} \omega = \Pi _j \omega + \delta \omega _{ab} \qquad \text {for } a,b \in \{0,1\}, \end{aligned}$$

where the shifts \(\delta \omega _{00}\), \(\delta \omega _{10}\), \(\delta \omega _{01}\), \(\delta \omega _{11}\) can be chosen as

$$\begin{aligned} \delta \omega _{00}&= \left( (\mathrm {E}_1 - \mathrm {E}_j) \begin{bmatrix} s\\t \end{bmatrix}, \ldots , (\mathrm {E}_p - \mathrm {E}_j) \begin{bmatrix} s\\t \end{bmatrix} \right) , \\ \delta \omega _{10}&= \left( (\mathrm {E}_1 - \mathrm {E}_j) \begin{bmatrix} s-1\\t \end{bmatrix}, \ldots , (\mathrm {E}_p - \mathrm {E}_j) \begin{bmatrix} s-1\\t \end{bmatrix} \right) , \\ \delta \omega _{01}&= \left( (\mathrm {E}_1 - \mathrm {E}_j) \begin{bmatrix} s\\t-1 \end{bmatrix}, \ldots , (\mathrm {E}_p - \mathrm {E}_j) \begin{bmatrix} s\\t-1 \end{bmatrix} \right) , \\ \delta \omega _{11}&= \left( (\mathrm {E}_1 - \mathrm {E}_j) \begin{bmatrix} s-1\\t-1 \end{bmatrix}, \ldots , (\mathrm {E}_p - \mathrm {E}_j) \begin{bmatrix} s-1\\t-1 \end{bmatrix} \right) , \end{aligned}$$

since \(\delta \omega _{ab}\) is defined on \(\Omega \) and is thus invariant under lattice shifts. Note that for \(a,b \in \{0,1\}\),

$$\begin{aligned} \delta \omega _{ab,j} = \varvec{0}\qquad \text {and}\qquad \Vert \delta \omega _{ab} \Vert \leqq \sqrt{2}\; \theta , \end{aligned}$$

where \(\theta \) is defined in (3.6). Furthermore, the weighted average of these shifts is zero:

$$\begin{aligned} \sum _{a,b \in \{0, 1 \}}\alpha _{ab}\; \delta \omega _{ab} = 0, \end{aligned}$$

where we have introduced the bilinear weights

$$\begin{aligned} \alpha _{00} = (1-s)(1-t), \quad \alpha _{10} = s(1-t), \quad \alpha _{01} = (1-s)t, \quad \alpha _{11} = st. \end{aligned}$$

As a consequence, by the affine character of the Taylor approximant \(T_\omega ^1 \mathbf {u}_j\) defined above,

$$\begin{aligned} \widehat{\mathbf {u}}_j(\omega ) = T^1_\omega \mathbf {u}_j(0) = \sum _{a,b \in \{ 0, 1 \} } \alpha _{ab} \; T^1_\omega \mathbf {u}_j(\delta \omega _{ab}). \end{aligned}$$
(A.4)

Let us now rewrite the definition (3.2) of the bilinear interpolant \(\widetilde{\mathbf {u}}_j\) as

$$\begin{aligned} \widetilde{\mathbf {u}}_j(\omega ) = \sum _{a,b \in \{ 0, 1 \} } \alpha _{ab} \; \mathbf {u}_j(\Pi _j \omega + \delta \omega _{ab}). \end{aligned}$$
(A.5)

Taking the difference of the identities (A.4), (A.5) and using convexity of the norm and the above Taylor estimate (A.3), we find the pointwise estimate

$$\begin{aligned} \begin{aligned} \left\| \widehat{\mathbf {u}}_j(\omega ) - \widetilde{\mathbf {u}}_j(\omega ) \right\| ^q \leqq \theta ^{2q} \int \nolimits _0^1 (1-h)^{2q} \sum _{a,b \in \{ 0, 1 \} } \alpha _{ab} \; \left\| \nabla _\omega ^2 \mathbf {u}_j (\Pi _j \omega + h \delta \omega _{ab}) \right\| ^q \,\mathrm{d} h. \end{aligned} \end{aligned}$$

We may now integrate over the configuration parameter \(\omega = (\varvec{\gamma }_1, \ldots , \varvec{\gamma }_p)\). The difference between \(\omega \) and \(\left( \Pi _j \omega + h \delta \omega _{ab}\right) \) depends only on s, t and h, for example

$$\begin{aligned} \omega - \left( \Pi _j \omega + h \delta \omega _{00}\right) = - \left( \left( h \mathrm {E}_j + (1-h) \mathrm {E}_1 \right) \begin{bmatrix} s \\ t \end{bmatrix} , \ldots , \left( h \mathrm {E}_j + (1-h) \mathrm {E}_p \right) \begin{bmatrix} s \\ t \end{bmatrix} \right) . \end{aligned}$$

Integrating over the variables \(\varvec{\gamma }_i\) for \(i \ne j\) with fixed values of \(\varvec{\gamma }_j= \mathrm {E}_j \begin{bmatrix} s \\ t \end{bmatrix}\) and h we find that by translation invariance of the Lebesgue measure,

This leads to

Since the right-hand side does not depend on the remaining variable \(\varvec{\gamma }_j\), one last integration over it yields

$$\begin{aligned} \left\| \widehat{\mathbf {u}}_j(\omega ) - \widetilde{\mathbf {u}}_j(\omega ) \right\| _{L^q(\Omega )}^q \leqq \frac{\vert \Gamma _j \vert }{2q+1} \theta ^{2q} \; \left\| \nabla ^2_\omega \mathbf {u}_j \right\| _{L^q(X_j, \Vert \cdot \Vert _\mathrm {op})}^q, \end{aligned}$$

which proves the desired estimate (3.5). \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazeaux, P., Luskin, M. & Massatt, D. Energy Minimization of Two Dimensional Incommensurate Heterostructures. Arch Rational Mech Anal 235, 1289–1325 (2020). https://doi.org/10.1007/s00205-019-01444-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01444-y

Navigation