Skip to main content
Log in

On Identifying Magnetized Anomalies Using Geomagnetic Monitoring Within a Magnetohydrodynamic model

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper is a continuation and an extension of our recent work (Deng et al. in Arch Ration Mech Anal 231(1):153–187, 2019) on the identification of magnetized anomalies using geomagnetic monitoring, which aims to establish a rigorous mathematical theory for the geomagnetic detection technology. Suppose a collection of magnetized anomalies is present in the shell of the Earth. By monitoring the variation of the magnetic field of the Earth due to the presence of the anomalies, we establish sufficient conditions for the unique recovery of these unknown anomalies. Deng et al. (2019), the geomagnetic model was described by a linear Maxwell system. In this paper, we consider a much more sophisticated and complicated magnetohydrodynamic model, which stems from the widely accepted dynamo theory of geomagnetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari, H., Chen, J., Chen, Z., Garnier, J., Volkov, D.: Target detection and characterization from electromagnetic induction data. J. Math. Pures Appl. 101(9), 54–75, 2014

    Article  MathSciNet  Google Scholar 

  2. Ammari, H., Deng, Y., Millien, P.: Surface plasmon resonance of nanoparticles and applications in imaging. Arch. Ration. Mech. Anal. 220, 109–153, 2016

    Article  MathSciNet  Google Scholar 

  3. Ammari, H., Iakovleva, E., Lesselier, D., Perrusson, G.: MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions. SIAM J. Sci. Comput. 29(2), 674–709, 2007

    Article  MathSciNet  Google Scholar 

  4. Ammari, H., Kang, H.: Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences. Springer, Berlin 2007

    MATH  Google Scholar 

  5. Ammari, H., Kang, H., Lee, H., Lim, M., Yu, S.: Enhancement of near cloaking for the full Maxwell equations. SIAM J. Appl. Math. 73(6), 2055–2076, 2013

    Article  MathSciNet  Google Scholar 

  6. Ammari, H., Nédélec, J.-C.: Low-frequency electromagnetic scattering. SIAM J. Math. Anal. 31(4), 836–861, 2000

    Article  MathSciNet  Google Scholar 

  7. Ammari, H., Vogelius, M.S., Volkov, D.: Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. II. The full Maxwell equations. J. Math. Pures Appl. (9)80(8), 769–814, 2001

    Article  MathSciNet  Google Scholar 

  8. Backus, G., Parker, R., Constable, C.: Foundations of Geomagnetism. Cambridge University Press, Cambridge 1996

    Google Scholar 

  9. Buffa, A., Costabel, M., Sheen, D.: On traces for \(H({{\rm curl}}, \Omega )\) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867, 2002

    Article  MathSciNet  Google Scholar 

  10. Chan, K.H., Zhang, K., Zou, J.: Spherical interface dynamos: mathematical theory, finite element approximation, and application. SIAM J. Numer. Anal. 44, 1877–1902, 2006

    Article  MathSciNet  Google Scholar 

  11. Chan, K., Zhang, K., Liao, X., Schubert, G., Zou, J.: A three-dimensional spherical nonlinear interface dynamo. Astrophys. J. 596, 663–679, 2003

    Article  ADS  Google Scholar 

  12. Dassios, G.: Low-frequency scattering, chapter 1.5.1. Scattering: Scattering and Inverse Scattering in Pure and Applied Science, (Eds. Pike R. and Sabatier P.) Academic Press, New York, 230–244, 2002

    Chapter  Google Scholar 

  13. Deng, Y., Li, H., Liu, H.: On spectral properties of Neuman–Poincaré operator on spheres and plasmonic resonances in 3D elastostatics. J. Spectr. Theory. 10.4171/JST/262. https://doi.org/10.4171/JST/262

    Article  Google Scholar 

  14. Deng, Y., Li, J., Liu, H.: On identifying magnetized anomalies using geomagnetic monitoring. Arch. Ration. Mech. Anal. 231(1), 153–187, 2019

    Article  MathSciNet  Google Scholar 

  15. Deng, Y., Liu, H., Liu, X.: Recovery of an embedded obstacle and the surrounding medium for Maxwell’s system. J. Differ. Equ. 267(4), 2192–2209, 2019

    Article  ADS  MathSciNet  Google Scholar 

  16. Deng, Y., Liu, H., Uhlmann, G.: On an inverse boundary problem arising in brain imaging. J. Differ. Equ. 267(4), 2471–2502, 2019

    Article  ADS  MathSciNet  Google Scholar 

  17. Dynamo theory, https://en.wikipedia.org/wiki/Dynamo_theory.

  18. He, Y., Zou, J.: A priori estimates and optimal finite element approximation of the MHD flow in smooth domains. ESAIM Math. Model. Numer. Anal. 52, 181–206, 2018

    Article  MathSciNet  Google Scholar 

  19. Hollerbach, R., Jones, C.A.: A geodynamo model incorporating a finitely conducting inner core. Phys. Earth Planet. Inter. 75, 317–327, 1993

    Article  ADS  Google Scholar 

  20. Kleinman, R.E.: Low frequency electromagnetic scattering, chapter 1. Electromagnetic Scattering, (Ed. Uslenghi P.L.E. ) Academic Press, New York, 1–28, 1978

    Google Scholar 

  21. Labrosse, S.: Thermal and magnetic evolution of the Earth’s core. Phys. Earth Planet. Inter. 140, 127–143, 2003

    Article  ADS  Google Scholar 

  22. Liu, H., Uhmann, G.: Determing both sound speed and internal source in thermo- and photo-acoutic tomography. Inverse Probl. 31, 105005, 2015

    Article  ADS  Google Scholar 

  23. Nédélec, J.C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Springer, New York 2001

    Book  Google Scholar 

  24. Roberts, P.H., Glatzmaier, G.A.: The geodynamo, past, present and future. Geophys. Astrophys. Fluid Dyn. 94, 47–84, 2001

    Article  ADS  Google Scholar 

  25. Sakuraba, A., Kono, M.: Effect of the inner core on the numerical solution of the magnetohydrodynamic dynamo. Phys. Earth Planet. Inter. 111, 105–121, 1999

    Article  ADS  Google Scholar 

  26. Torres, R.H.: Maxwell’s equations and dielectric obstacles with Lipschitz boundaries. J. Lond. Math. Soc. 2(57), 157–169, 1998

    Article  MathSciNet  Google Scholar 

  27. Weiss, N.: Dynamos in planets, stars and galaxies. Astron. Geophys. 43, 3.09–3.15, 2002

    Google Scholar 

  28. Zhan, X., Zhang, K., Zhu, R.: A full-sphere convection-driven dynamo: implications for the ancient geomagnetic field. Phys. Earth Planet. Inter. 187, 328–335, 2011

    Article  ADS  Google Scholar 

  29. Zhang, K., Schubert, G.: Magnetohydrodynamics in rapidly rotating spherical systems. Ann. Rev. Fluid Mech. 32, 409–443, 2000

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitudes to the anonymous referee for many insightful and constructive comments, which have led to significant improvements on the results and presentation of the paper. The work of Y. Deng was supported by NSF Grant of China No. 11601528, NSF Grant of Hunan Nos. 2017JJ3432 and 2018JJ3622, Innovation-Driven Project of Central South University, No. 2018CX041. The work of H. Liu was supported by the FRG and startup grants from Hong Kong Baptist University, Hong Kong RGC General Research Funds 12302017, 12301218 and 12302919.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Liu.

Additional information

Communicated by P.-L. Lions

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 2.2

Define

$$\begin{aligned} N_t:=\Vert \Phi _s\Vert _{\mathrm{{TH}}(\mathrm {div}, \partial \Sigma )}+\Vert \Phi _c\Vert _{\mathrm{{TH}}(\mathrm {div}, \partial \Sigma _c)}+\Vert \nabla _{\partial \Sigma }\varphi _s\Vert _{\mathrm{{TH}}(\mathrm {div}, \partial \Sigma _c)}. \end{aligned}$$

To prove Lemma 2.2, we next make use of (2.14)–(2.16) to conduct the asymptotic analysis with respect to \(k_s\). Denote by \(\Delta _{\partial \Sigma }:=\nabla _{\partial \Sigma }\cdot \nabla _{\partial \Sigma }\). First, from (2.13) one can show that

$$\begin{aligned} \Vert \Delta _{\partial \Sigma } \varphi _s\Vert _{L^2(\partial \Sigma )}=\mathcal {O}(k_s^2N_t). \end{aligned}$$
(A.1)

Next, we derive the inequality

$$\begin{aligned} \Vert \nabla _{\partial \Sigma }\varphi _s\Vert _{\mathrm{TH}(\mathrm{div}, \partial \Sigma )}\leqq C \Vert \Delta _{\partial \Sigma }\varphi _s\Vert _{L^2(\partial \Sigma )}, \end{aligned}$$
(A.2)

where C is a constant depends only on \(\Sigma \). In fact, for any \(\Psi \in L_T^2(\partial \Sigma )\), by using the Helmholtz decomposition [2, 9], there exists a unique \(u\in H^1(\partial \Sigma )\), \(\int _{\partial \Sigma } u \mathrm{d}s=0\), such that

$$\begin{aligned} \Psi =\nabla _{\partial \Sigma } u + \nabla _{\partial \Sigma } u\times \nu . \end{aligned}$$
(A.3)

By integration by parts there holds

$$\begin{aligned} \begin{aligned} \Vert \nabla _{\partial \Sigma }\varphi _s\Vert _{L^2(\partial \Sigma )}&=\sup _{\Psi \in L_T^2(\partial \Sigma )}\frac{\langle \nabla _{\partial \Sigma } \varphi _s, \Psi \rangle }{\Vert \Psi \Vert _{\mathrm{TH}(\mathrm{div},\partial \Sigma )}}\\&=\sup _{\Psi \in L_T^2(\partial \Sigma )}\frac{\int _{\partial \Sigma } \nabla _{\partial \Sigma } \varphi _s \cdot \Big (\nabla _{\partial \Sigma } u + \nabla _{\partial \Sigma } u\times \nu \Big )\mathrm{d}s}{\Vert \nabla _{\partial \Sigma } u + \nabla _{\partial \Sigma } u\times \nu \Vert _{L^2(\partial \Sigma )}}\\&=\sup _{\Psi \in L_T^2(\partial \Sigma )}\frac{-\int _{\partial \Sigma } (\Delta _{\partial \Sigma } \varphi _s) u \mathrm{d}s}{\Vert \nabla _{\partial \Sigma } u\Vert _{L^2(\partial \Sigma )} + \Vert \nabla _{\partial \Sigma } u\times \nu \Vert _{L^2(\partial \Sigma )}}\\&\leqq \frac{1}{2}\sup _{\Psi \in L_T^2(\partial \Sigma )}\frac{\Vert \Delta _{\partial \Sigma } \varphi _s\Vert _{L^2(\partial \Sigma )} \Vert u\Vert _{L^2(\partial \Sigma )} }{\Vert \nabla _{\partial \Sigma } u\Vert _{L^2(\partial \Sigma )} } \leqq C \Vert \Delta _{\partial \Sigma } \varphi _s\Vert _{L^2(\partial \Sigma )}, \end{aligned} \end{aligned}$$
(A.4)

where the last inequality is obtained by using the Poincaré inequality (see, for example, [4]). By using (A.1) and (A.2), one thus derives that

$$\begin{aligned} \Vert \nabla _{\partial \Sigma }\varphi _s\Vert _{\mathrm{TH}(\mathrm{div}, \partial \Sigma )}\sim \Vert \Delta _{\partial \Sigma }\varphi _s\Vert _{L^2(\partial \Sigma )}=\mathcal {O}(k_s^2N_t). \end{aligned}$$
(A.5)

Furthermore, from (2.15) one obtains

$$\begin{aligned} \Vert \Phi _s\Vert _{\mathrm{{TH}}(\mathrm {div}, \partial \Sigma )}=\mathcal {O}(k_s^2N_t). \end{aligned}$$
(A.6)

By substituting (A.5)–(A.6) into (2.14), it holds that

$$\begin{aligned} \begin{aligned} \Big (-\frac{I}{2}+\mathcal {M}^{0}_{\Sigma _c}\Big )[\Phi _c] =\nu \times \mathbf {H}_0|_{\partial \Sigma _c}^++\mathcal {O}(k_s^2). \end{aligned} \end{aligned}$$
(A.7)

Since \(-\frac{I}{2} + \mathcal {M}^{0}_{\Sigma _c}\) is invertible on \(\mathrm{TH}(\mathrm{div}, \partial \Sigma _c)\), by combining (A.5)–(A.7), one can obtain (2.18), which completes the proof.

Appendix B: Proof of Lemma 2.3

By the continuity of \(\nu \times \mathbf {H}\) across \(\partial \Sigma \) and \(\partial D_{l}\), and using the same notation as that in Appendix A and the jump formulas (2.4) and (2.6), one can show that

$$\begin{aligned} \begin{aligned}&\mathcal {M}_{\Sigma ,\Sigma _c}^0[\Psi _0]+\Big (-\frac{I}{2}+\mathcal {M}_{\Sigma }^0\Big )[\Phi _0]+ \mathcal {L}_{\Sigma }^0[\nabla _{\partial \Sigma }\varphi _0]\\&\qquad +\,\sum _{l'=1}^{l_0}\big (\mathcal {M}_{\Sigma , D_{l'}}^0[\Phi _{l'}]+\mathcal {L}_{\Sigma , D_{l'}}^0[\nabla _{\partial D_{l'}}\varphi _{l'}]\big )\\&\quad =\mathcal {M}_{\Sigma ,\Sigma _c}^{k_s}[\Psi _0]+\Big (\frac{I}{2}+\mathcal {M}_{\Sigma }^{k_s}\Big )[\Phi _0]+ \mathcal {L}_{\Sigma }^{k_s}[\nabla _{\partial \Sigma }\varphi _0]\\&\qquad +\,\sum _{l'=1}^{l_0}\big (\mathcal {M}_{\Sigma , D_{l'}}^{k_s}[\Phi _{l'}]+\mathcal {L}_{\Sigma , D_{l'}}^{k_s}[\nabla _{\partial D_{l'}}\varphi _{l'}]\big ) \end{aligned} \end{aligned}$$
(B.1)

holds on \(\partial \Sigma \) and

$$\begin{aligned} \begin{aligned}&\mathcal {M}_{D_l,\Sigma _c}^{k_s}[\Psi _0]+\mathcal {M}_{D_l,\Sigma }^{k_s}[\Phi _0]+ \mathcal {L}_{D_l, \Sigma }^{k_s}[\nabla _{\partial \Sigma }\varphi _0]-\frac{\Phi _l}{2}\\&\qquad +\,\sum _{l'=1}^{l_0}\big (\mathcal {M}_{D_l, D_{l'}}^{k_s}[\Phi _{l'}]+\mathcal {L}_{D_l, D_{l'}}^{k_s}[\nabla _{\partial D_{l'}}\varphi _{l'}]\big )\\&\quad =\mathcal {M}_{D_l,\Sigma _c}^{k_l}[\Psi _0]+\mathcal {M}_{D_l,\Sigma }^{k_l}[\Phi _0]+ \mathcal {L}_{D_l, \Sigma }^{k_l}[\nabla _{\partial \Sigma }\varphi _0]+\frac{\Phi _l}{2}\\&\qquad +\,\sum _{l'=1}^{l_0}\big (\mathcal {M}_{D_l, D_{l'}}^{k_l}[\Phi _{l'}]+\mathcal {L}_{D_l, D_{l'}}^{k_l}[\nabla _{\partial D_{l'}}\varphi _{l'}]\big ) \end{aligned} \end{aligned}$$
(B.2)

holds on \(\partial D_l\), \(l=1, 2, \ldots , l_0\). On the other hand, by using the continuity of \(\nu \cdot \mu \mathbf {H}\) across \(\partial \Sigma \) and \(\partial D_{l}\) (see Lemma 3.3 in [16]), one can further show that

$$\begin{aligned} \begin{aligned}&\mathcal {N}_{\Sigma ,\Sigma _c}^0[\Psi _0]+\mathcal {N}_{\Sigma }^0[\Phi _0]+ \Big (\frac{I}{2}+(\mathcal {K}_{\Sigma }^0)^*\Big )[\Delta _{\partial \Sigma }\varphi _0]\\&\qquad +\,\sum _{l'=1}^{l_0}\big (\mathcal {N}_{\Sigma , D_{l'}}^0[\Phi _{l'}]+\mathcal {K}_{\Sigma , D_{l'}}^0[\Delta _{\partial D_{l'}}\varphi _{l'}]\big )\\&\quad =\mathcal {N}_{\Sigma ,\Sigma _c}^{k_s}[\Psi _0]+\mathcal {N}_{\Sigma }^{k_s}[\Phi _0]+ \Big (-\frac{I}{2}+(\mathcal {K}_{\Sigma }^{k_s})^*\Big )[\Delta _{\partial \Sigma }\varphi _0]+k_s^2\nu \cdot \mathcal {A}_{\Sigma }^{k_s}[\nabla _{\partial \Sigma }\varphi _0]\\&\qquad +\,\sum _{l'=1}^{l_0}\big (\mathcal {N}_{\Sigma , D_{l'}}^{k_s}[\Phi _{l'}] +\mathcal {K}_{\Sigma , D_{l'}}^{k_s}[\Delta _{\partial D_{l'}}\varphi _{l'}]\big ) \end{aligned} \end{aligned}$$
(B.3)

holds on \(\partial \Sigma \) and

$$\begin{aligned} \begin{aligned}&\mu _0\Big (\mathcal {N}_{D_l,\Sigma _c}^{k_s}[\Psi _0]+\mathcal {N}_{D_l,\Sigma }^{k_s}[\Phi _0]+ \mathcal {K}_{D_l,\Sigma }^{k_s}[\Delta _{\partial \Sigma }\varphi _0]+\frac{\varphi _l}{2}\\&\qquad +\,\sum _{l'=1}^{l_0}\big (\mathcal {N}_{D_l, D_{l'}}^{k_s}[\Phi _{l'}]+k_s^2\nu \cdot \mathcal {A}_{D_l, D_{l'}}^{k_s}[\nabla _{\partial D_{l'}}\varphi _{l'}]+\mathcal {K}_{D_l, D_{l'}}^{k_s}[\Delta _{\partial D_{l'}}\varphi _{l'}]\big )\Big )\\&\quad =\mu _l\Big (\mathcal {N}_{D_l,\Sigma _c}^{k_l}[\Psi _0]+\mathcal {N}_{D_l,\Sigma }^{k_l}[\Phi _0]+ \mathcal {K}_{D_l,\Sigma }^{k_l}[\Delta _{\partial \Sigma }\varphi _0]-\frac{\varphi _l}{2}\\&\qquad +\,\sum _{l'=1}^{l_0}\big (\mathcal {N}_{D_l, D_{l'}}^{k_l}[\Phi _{l'}]+k_l^2\nu \cdot \mathcal {A}_{D_l, D_{l'}}^{k_l}[\nabla _{\partial D_{l'}}\varphi _{l'}]+\mathcal {K}_{D_l, D_{l'}}^{k_l}[\Delta _{D_{l'}}\varphi _{l'}]\big )\Big ) \end{aligned} \end{aligned}$$
(B.4)

holds on \(\partial D_l\), where \(\mathcal {K}_{\Sigma ', \Sigma ''}^{k}: L^2(\partial \Sigma ')\rightarrow L^2(\partial \Sigma '')\), \(\Sigma ', \Sigma ''\in \{\Sigma , \Sigma _c, D_1, D_2, \ldots , D_{l_0}\}\), \(k\in \{0, k_s, k_1, k_2, \ldots , k_{l_0}\}\), are defined by

$$\begin{aligned} \mathcal {K}_{\Sigma ', \Sigma ''}^k[\varphi ]:=\nu \cdot \nabla \mathcal {S}^{k}_{\Sigma ''}[\varphi ]|_{\partial \Sigma '}^{-}. \end{aligned}$$
(B.5)

If \(\Sigma '=\Sigma ''\), then \(\mathcal {K}_{\Sigma ', \Sigma '}^k[\varphi ]:=(\mathcal {K}_{\Sigma '}^k)^*\). Similarly, \(\mathcal {A}_{\Sigma ', \Sigma ''}^{k}: \mathrm{TH}(\mathrm{div}, \partial \Sigma ')\rightarrow \mathrm{TH}(\mathrm{div}, \partial \Sigma '')\), is defined by

$$\begin{aligned} \mathcal {A}_{\Sigma ', \Sigma ''}^k[\Phi ]:=\mathcal {A}^{k}_{\Sigma ''}[\Phi ]|_{\partial \Sigma '}^{-}. \end{aligned}$$
(B.6)

Furthermore, by using the boundary magnetic field \(\nu \times \mathbf {H}\) on \(\partial \Sigma _c\), one also has

$$\begin{aligned} \begin{aligned}&\Big (-\frac{I}{2}+\mathcal {M}_{\Sigma _c}^{k_s}\Big )[\Psi _0]+\mathcal {M}_{\Sigma _c,\Sigma }^{k_s}[\Phi _0]+ \mathcal {L}_{\Sigma _c,\Sigma }^{k_s}[\nabla _{\partial \Sigma }\varphi _0]\\&\quad +\,\sum _{l'=1}^{l_0}\big (\mathcal {M}_{\Sigma _c, D_{l'}}^{k_s}[\Phi _{l'}]+\mathcal {L}_{\Sigma _c, D_{l'}}^{k_s}[\nabla _{\partial D_{l'}}\varphi _{l'}]\big )=\nu \times \mathbf {H}.\ \ \ \text{ on }\ \partial \Sigma _c. \end{aligned} \end{aligned}$$
(B.7)

By combining (2.19)–(B.7), along with straightforward calculations and the similar inequality that is deduced in “Appendix A”, one can derive the following estimates sequentially:

$$\begin{aligned} \Vert \Phi _0\Vert _{\mathrm{TH}(\mathrm{div}, \partial \Sigma )}= & {} \mathcal {O}(\omega N_f),\nonumber \\ \Vert \nabla _{\partial \Sigma }\varphi _0\Vert _{\mathrm{TH}(\mathrm{div}, \partial \Sigma )}= & {} \mathcal {O}(\omega N_f),\quad \Vert \Phi _l\Vert _{\mathrm{TH}(\mathrm{div}, \partial D_l)}=\mathcal {O}(\omega N_f), \end{aligned}$$
(B.8)

where \(l=1, 2, \ldots , l_0\) and \(N_f:=\mathcal {O}(\Vert \Psi _0\Vert _{\mathrm{TH}(\mathrm{div}, \partial \Sigma _c)}+\sum _{l'=1}^{l_0}\Vert \nabla _{\partial D_{l'}}\varphi _{l'}\Vert _{\mathrm{TH}(\mathrm{div}, (\partial D_l)})\), and

$$\begin{aligned} \begin{aligned} \Psi _0&=\Big (-\frac{I}{2}+\mathcal {M}_{\Sigma _c}^0\Big )^{-1}[\nu \times \mathbf {H}]-\sum _{l'=1}^{l_0}\Big (-\frac{I}{2}+\mathcal {M}_{\Sigma _c}^0\Big )^{-1}\mathcal {L}_{\Sigma _c, D_{l'}}^{0}[\Delta _{D_{l'}}\varphi _{l'}]\\&\quad +\,\mathcal {O}\Big (\omega \sum _{l'=1}^{l_0}\Vert \Delta _{D_{l'}}\varphi _{l'}\Vert _{L^2(\partial D_l)}\Big ). \end{aligned} \end{aligned}$$
(B.9)

Hence

$$\begin{aligned} \begin{aligned}&\left( \varsigma _l I -(\mathcal {K}_{D_l}^0)^*+\mathcal {P}_{D_l, \Sigma _c}\mathcal {L}_{\Sigma _c, D_l}^0\right) [\Delta _{\partial D_l}\varphi _l]\\&\qquad -\,\sum _{l'\ne l}^{l_0} \Big (\mathcal {K}_{D_l, D_{l'}}^0-\mathcal {P}_{D_l, \Sigma _c}\mathcal {L}_{\Sigma _c, D_{l'}}^0\Big )[\Delta _{\partial D_{l'}}\varphi _{l'}]\\&\quad =\mathcal {P}_{D_l, \Sigma _c}[\nu \times \mathbf {H}|_{\partial \Sigma _c}]+\mathcal {O}(\omega ), \end{aligned} \end{aligned}$$
(B.10)

where the operators \(\mathcal {P}_{D_l, \Sigma _c}: \mathrm{TH}(\mathrm{div}, \partial \Sigma _c)\rightarrow \mathrm{TH}(\mathrm{div}, \partial D_l)\), \(l=1, 2, \ldots , l_0\), are defined by

$$\begin{aligned} \mathcal {P}_{D_l, \Sigma _c}[\Phi ]:=\mathcal {N}_{D_l, \Sigma _c}^0\Big (-\frac{I}{2}+\mathcal {M}_{\Sigma _c}^0\Big )^{-1}[\Phi ]. \end{aligned}$$
(B.11)

Noting that \((\mathcal {K}_{D_l}^0)^*\) and \(\mathcal {P}_{D_l, \Sigma _c}\mathcal {L}_{\Sigma _c, D_l}^0\) are compact operators on \(L^2(\partial D_l)\), one can prove the invertibility of \(\varsigma _l I -(\mathcal {K}_{D_l}^0)^*+\mathcal {P}_{D_l, \Sigma _c}\mathcal {L}_{\Sigma _c, D_l}^0\) on \(L^2(\partial D_l)\) by following a similar proof of Lemma 2.2 in [14]. In fact, by the Fredholm theory, it suffices to show the uniqueness of a trivial solution to the following integral equation:

$$\begin{aligned} \left( \varsigma _l I -(\mathcal {K}_{D_l}^0)^*+\mathcal {P}_{D_l, \Sigma _c}\mathcal {L}_{\Sigma _c, D_l}^0\right) [\Delta _{\partial D_l}\varphi _l]=0. \end{aligned}$$
(B.12)

Note that there exists only a trial solution to the following system (see Appendix A in [14]):

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle {\nabla \times \mathbf {H}=0, \quad \nabla \cdot \mathbf {H}=0}, &{} \text{ in } \,\ (\mathbb {R}^3{\setminus }\overline{D_l \cup \Sigma _c})\cup D_l,\\ \displaystyle {\nu _l\times \mathbf {H}|_+=\nu _l\times \mathbf {H}|_-,} &{} \text{ on } \, \ \partial D_l, \\ \displaystyle {\mu _0\nu _l\cdot \mathbf {H}|_+=\mu _l\nu _l\cdot \mathbf {H}|_-, }&{} \text{ on } \,\ \partial D_l, \\ \displaystyle {\nu \times \mathbf {H}|_+=0, \quad \int _{\partial \Sigma _c}\nu \cdot \mathbf {H}|_+ =0,} &{}\text{ on } \,\ \partial \Sigma _c, \\ \displaystyle {\mathbf {H}(\mathbf {x})=\mathcal {O}(\Vert \mathbf {x}\Vert ^{-2}), \quad \Vert \mathbf {x}\Vert \rightarrow \infty .} \end{array} \right. \end{aligned}$$
(B.13)

On the other hand, one can verify that

$$\begin{aligned} \mathbf {H}=\Big (-\nabla \mathcal {S}_{D_l}^{0}+\nabla \times \mathcal {A}_{\Sigma _c}^0\left( -\frac{I}{2}+\mathcal {M}_{\Sigma _c}^{0}\right) ^{-1}\nu \times \nabla \mathcal {S}_{D_l}^{0}\Big )[\Delta _{\partial D_l}\varphi _l] \end{aligned}$$
(B.14)

is also the solution to (B.13). Therefore, one has

$$\begin{aligned} \Big (-\nabla \mathcal {S}_{D_l}^{0}+\nabla \times \mathcal {A}_{\Sigma _c}^0\left( -\frac{I}{2}+\mathcal {M}_{\Sigma _c}^{0}\right) ^{-1}\nu \times \nabla \mathcal {S}_{D_l}^{0}\Big )[\Delta _{\partial D_l}\varphi _l]=0 \quad \text{ in } \, \ \mathbb {R}^3{\setminus }\overline{\Sigma _c}. \end{aligned}$$
(B.15)

Hence \(\Delta _{\partial D_l}\varphi _l=0\), which proves the unique trial solution to (B.12). Note that \(D_l\), \(l=1, 2, \ldots , l_0\) are small inclusions which are disjoint from each, one can prove the unique solvability of (B.10) (see Appendix B in [14]).

Appendix C: Harmonic Representation of Vectorial Spherical Polynomials

In this appendix, we shall represent \(\mathbf {A}_n^m({\hat{\mathbf {x}}})\xi \), where \(\mathbf {A}_n^m({\hat{\mathbf {x}}})\) is defined in (3.10) and \(\xi \in \mathbb {R}^3\), in terms of vectorial spherical harmonic functions. Recall that the vectorial spherical harmonic functions of degree n are composed of \(\mathbf {M}_{n+1}^m({\hat{\mathbf {x}}})\), \(\mathbf {Q}_{n-1}^m({\hat{\mathbf {x}}})\) and \(\mathbf {T}_n^m({\hat{\mathbf {x}}})\), which are defined in (3.2) and (3.3). From (3.10) one has

$$\begin{aligned} \begin{aligned} \mathbf {A}_n^m({\hat{\mathbf {x}}})\xi&=(n+1){\hat{\mathbf {x}}}\nabla _SY_n^m({\hat{\mathbf {x}}})^T\xi +(n+1)Y_n^m({\hat{\mathbf {x}}})\xi -(n+1)(n+3)Y_n^m({\hat{\mathbf {x}}}){\hat{\mathbf {x}}}{\hat{\mathbf {x}}}^T\xi \\&\quad -\,\nabla _S(\nabla _SY_n^m({\hat{\mathbf {x}}})^T\xi )+(n+2)\nabla _SY_n^m({\hat{\mathbf {x}}}) {\hat{\mathbf {x}}}^T\xi . \end{aligned} \end{aligned}$$
(C.1)

By vector calculus identity and integration by parts, we have that

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {S}} \overline{\mathbf {T}_n^m({\hat{\mathbf {x}}})}\cdot (\mathbf {A}_n^m({\hat{\mathbf {x}}})\xi ) \mathrm{d}s=(n+1)\int _{\mathbb {S}}Y_n^m({\hat{\mathbf {x}}})\overline{\mathbf {T}_n^m({\hat{\mathbf {x}}})}\cdot \xi \mathrm{d}s\\&\quad =(n+1)\int _{\mathbb {S}}\Vert \mathbf {x}\Vert ^nY_n^m({\hat{\mathbf {x}}}){\hat{\mathbf {x}}}\cdot (\xi \times \nabla (\Vert \mathbf {x}\Vert ^n \overline{Y_n^m({\hat{\mathbf {x}}})}))\mathrm{d}s\\&\quad =(n+1)\int _{B_1}\nabla \cdot \big (\Vert \mathbf {x}\Vert ^nY_n^m({\hat{\mathbf {x}}})\xi \times \nabla (\Vert \mathbf {x}\Vert ^n \overline{Y_n^m({\hat{\mathbf {x}}})})\big )\mathrm{d}\mathbf {x}\\&\quad =(n+1)\int _{B_1}\nabla (\Vert \mathbf {x}\Vert ^n \overline{Y_n^m({\hat{\mathbf {x}}})})\cdot \big (\nabla (\Vert \mathbf {x}\Vert ^nY_n^m({\hat{\mathbf {x}}}))\times \xi \big )\mathrm{d}\mathbf {x}=0. \end{aligned} \end{aligned}$$
(C.2)

Hence, \(\mathbf {A}_n^m({\hat{\mathbf {x}}})\xi \) is a linear combination of the spherical harmonics \(\{\mathbf {N}_{n+1}^m({\hat{\mathbf {x}}})\}\) and \(\{\mathbf {Q}_{n-1}^m({\hat{\mathbf {x}}})\}\). By straightforward computations, one can obtain that

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {S}} \overline{\mathbf {N}_{n'+1}^{m'}({\hat{\mathbf {x}}})}\cdot ({\hat{\mathbf {x}}}\nabla _SY_n^m({\hat{\mathbf {x}}})^T\xi ) \mathrm{d}s=\frac{n'+1}{n'} \int _{\mathbb {S}} \overline{\mathbf {Q}_{n'-1}^{m'}({\hat{\mathbf {x}}})}\cdot ({\hat{\mathbf {x}}}\nabla _SY_n^m({\hat{\mathbf {x}}})^T\xi ) \mathrm{d}s\\&\quad =(n'+1)\int _{\mathbb {S}}\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}\nabla _SY_n^m({\hat{\mathbf {x}}})^T\xi \mathrm{d}s. \end{aligned} \end{aligned}$$
(C.3)

Similarly, one can show that

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {S}} \overline{\mathbf {N}_{n'+1}^{m'}({\hat{\mathbf {x}}})}\cdot (Y_n^m({\hat{\mathbf {x}}})\xi ) \mathrm{d}s\\&\quad =-\int _{\mathbb {S}}Y_n^m({\hat{\mathbf {x}}})\nabla _S\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}^T\xi \mathrm{d}s+(n'+1)\int _{\mathbb {S}}\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}Y_n^m({\hat{\mathbf {x}}}){\hat{\mathbf {x}}}^T\xi \mathrm{d}s, \end{aligned} \end{aligned}$$
(C.4)

and

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {S}} \overline{\mathbf {Q}_{n'-1}^{m'}({\hat{\mathbf {x}}})}\cdot (Y_n^m({\hat{\mathbf {x}}})\xi ) \mathrm{d}s\\&\quad =\int _{\mathbb {S}}Y_n^m({\hat{\mathbf {x}}})\nabla _S\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}^T\xi \mathrm{d}s+n'\int _{\mathbb {S}}\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}Y_n^m({\hat{\mathbf {x}}}){\hat{\mathbf {x}}}^T\xi \mathrm{d}s, \end{aligned} \end{aligned}$$
(C.5)

and

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {S}} \overline{\mathbf {N}_{n'+1}^{m'}({\hat{\mathbf {x}}})}\cdot (Y_n^m({\hat{\mathbf {x}}}){\hat{\mathbf {x}}}{\hat{\mathbf {x}}}^T\xi ) \mathrm{d}s=\frac{n'+1}{n'} \int _{\mathbb {S}} \overline{\mathbf {Q}_{n'-1}^{m'}({\hat{\mathbf {x}}})}\cdot (Y_n^m({\hat{\mathbf {x}}}){\hat{\mathbf {x}}}{\hat{\mathbf {x}}}^T\xi ) \mathrm{d}s\\&\quad =(n'+1)\int _{\mathbb {S}}\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}Y_n^m({\hat{\mathbf {x}}}){\hat{\mathbf {x}}}^T\xi \mathrm{d}s. \end{aligned} \end{aligned}$$
(C.6)

Next, for the last two terms in (C.1), using integration by parts, we have

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {S}} \overline{\mathbf {N}_{n'+1}^{m'}({\hat{\mathbf {x}}})}\cdot \nabla _S(\nabla _SY_n^m({\hat{\mathbf {x}}})^T\xi ) \mathrm{d}s=-\int _{\mathbb {S}} \overline{\mathbf {Q}_{n'-1}^{m'}({\hat{\mathbf {x}}})}\cdot \nabla _S(\nabla _SY_n^m({\hat{\mathbf {x}}})^T\xi ) \mathrm{d}s\\&\quad =-\int _{\mathbb {S}} \nabla _S\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}\cdot \nabla _S(\nabla _SY_n^m({\hat{\mathbf {x}}})^T\xi )\mathrm{d}s\\&\quad =\int _{\mathbb {S}} \Delta _S\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}\nabla _SY_n^m({\hat{\mathbf {x}}})^T\xi \mathrm{d}s=-n'(n'+1)\int _{\mathbb {S}}\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}\nabla _SY_n^m({\hat{\mathbf {x}}})^T\xi \mathrm{d}s. \end{aligned} \end{aligned}$$
(C.7)

Furthermore, it holds that

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {S}} \overline{\mathbf {N}_{n'+1}^{m'}({\hat{\mathbf {x}}})}\cdot (\nabla _SY_n^m({\hat{\mathbf {x}}}) {\hat{\mathbf {x}}}^T\xi ) \mathrm{d}s=-\int _{\mathbb {S}} \overline{\mathbf {Q}_{n'-1}^{m'}({\hat{\mathbf {x}}})}\cdot (\nabla _SY_n^m({\hat{\mathbf {x}}}) {\hat{\mathbf {x}}}^T\xi ) \mathrm{d}s\\&\quad =-\int _{\mathbb {S}} \nabla _S\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}\cdot (\nabla _SY_n^m({\hat{\mathbf {x}}}) {\hat{\mathbf {x}}}^T\xi )\mathrm{d}s\\&\quad =-\int _{\mathbb {S}} \nabla _S\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}\cdot \big (\nabla (Y_n^m({\hat{\mathbf {x}}}) {\hat{\mathbf {x}}}^T\xi )-Y_n^m({\hat{\mathbf {x}}})\xi \big )\mathrm{d}s\\&\quad =-n'(n'+1)\int _{\mathbb {S}}\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}Y_n^m({\hat{\mathbf {x}}}) {\hat{\mathbf {x}}}^T\xi \mathrm{d}s+\int _{\mathbb {S}} Y_n^m({\hat{\mathbf {x}}})\nabla _S\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}^T\xi \mathrm{d}s. \end{aligned} \end{aligned}$$
(C.8)

In what follows, we define

$$\begin{aligned} \mathbf {a}_{n',n}^{m',m}:=\int _{\mathbb {S}}\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}\nabla _SY_n^m({\hat{\mathbf {x}}}) \mathrm{d}s,\quad \mathbf {b}_{n',n}^{m',m}:=\int _{\mathbb {S}}\overline{Y_{n'}^{m'}({\hat{\mathbf {x}}})}Y_n^m({\hat{\mathbf {x}}}){\hat{\mathbf {x}}} \mathrm{d}s. \end{aligned}$$
(C.9)

By combining (C.3)–(C.8) and using (C.1), one thus has

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {S}} \overline{\mathbf {N}_{n'+1}^{m'}({\hat{\mathbf {x}}})}\cdot (\mathbf {A}_n^m({\hat{\mathbf {x}}})\xi ) \mathrm{d}s\\&\quad =\left( (n'+1)(n'+n+1)\mathbf {a}_{n',n}^{m',m}-(n'+1)(n'+n+1)(n+2)\mathbf {b}_{n',n}^{m',m}+\overline{\mathbf {a}_{n,n'}^{m,m'}}\right) ^T\xi , \end{aligned} \end{aligned}$$
(C.10)

and

$$\begin{aligned} \begin{aligned} \int _{\mathbb {S}} \overline{\mathbf {Q}_{n'+1}^{m'}({\hat{\mathbf {x}}})}\cdot (\mathbf {A}_n^m({\hat{\mathbf {x}}})\xi ) \mathrm{d}s=\left( n'(n-n')\mathbf {a}_{n',n}^{m',m}-n'(n-n')(n+2)\mathbf {b}_{n',n}^{m',m}-\overline{\mathbf {a}_{n,n'}^{m,m'}}\right) ^T\xi . \end{aligned} \end{aligned}$$
(C.11)

By using the elementary result (cf. [23])

$$\begin{aligned} \mathbf {a}_{n',n}^{m',m}=\mathbf {b}_{n',n}^{m',m}=0, \quad \text{ for } \text{ any } \, n'\ne n-1, \, n+1, \text{ and } \, m'\ne m-1, m, m+1, \end{aligned}$$
(C.12)

one finally obtains

$$\begin{aligned} \begin{aligned} \mathbf {A}_n^m({\hat{\mathbf {x}}})\xi&=\sum _{m'=m-1}^{m+1}\Big ((\mathbf {c}_{n-1,n}^{m',m})^T\xi \mathbf {N}_{n}^{m'}({\hat{\mathbf {x}}})+(\mathbf {c}_{n+1,n}^{m',m})^T\xi \mathbf {N}_{n+2}^{m'}({\hat{\mathbf {x}}})\\&\quad +\,(\mathbf {d}_{n-1,n}^{m',m})^T\xi \mathbf {Q}_{n-2}^{m'}({\hat{\mathbf {x}}})+(\mathbf {d}_{n+1,n}^{m',m})^T\xi \mathbf {Q}_{n}^{m'}({\hat{\mathbf {x}}})\Big ), \end{aligned} \end{aligned}$$
(C.13)

where

$$\begin{aligned} \mathbf {c}_{n',n}^{m',m}:=\frac{(n'+1)(n'+n+1)\mathbf {a}_{n',n}^{m',m}-(n'+1)(n'+n+1)(n+2)\mathbf {b}_{n',n}^{m',m}+\overline{\mathbf {a}_{n,n'}^{m,m'}}}{(n'+1)(2n'+1)}, \end{aligned}$$
(C.14)

and

$$\begin{aligned} \mathbf {d}_{n',n}^{m',m}:=\frac{n'(n-n')\mathbf {a}_{n',n}^{m',m}-n'(n-n')(n+2)\mathbf {b}_{n',n}^{m',m}-\overline{\mathbf {a}_{n,n'}^{m,m'}}}{n'(2n'+1)}. \end{aligned}$$
(C.15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Li, J. & Liu, H. On Identifying Magnetized Anomalies Using Geomagnetic Monitoring Within a Magnetohydrodynamic model. Arch Rational Mech Anal 235, 691–721 (2020). https://doi.org/10.1007/s00205-019-01429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01429-x

Navigation