Skip to main content
Log in

Existence of a Highest Wave in a Fully Dispersive Two-Way Shallow Water Model

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the existence of periodic traveling waves in a bidirectional Whitham equation, combining the full two-way dispersion relation from the incompressible Euler equations with a canonical shallow water nonlinearity. Of particular interest is the existence of a highest, cusped, traveling wave solution, which we obtain as a limiting case at the end of the main bifurcation branch of \({2\pi}\)-periodic traveling wave solutions continuing from the zero state. Unlike the unidirectional Whitham equation, containing only one branch of the full Euler dispersion relation, where such a highest wave behaves like |x|1/2 near its crest, the cusped waves obtained here behave like |x log |x||. Although the linear operator involved in this equation can be easily represented in terms of an integral operator, it maps continuous functions out of the Hölder and Lipschitz scales of function spaces by introducing logarithmic singularities. Since the nonlinearity is also of higher order than that of the unidirectional Whitham equation, several parts of our proofs and results deviate from those of the corresponding unidirectional equation, with the analysis of the logarithmic singularity being the most subtle component. This paper is part of a longer research programme for understanding the interplay between nonlinearities and dispersion in the formation of large-amplitude waves and their singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aceves-Sánchez P., Minzoni A.A., Panayotaros P.: Numerical study of a nonlocal model for water-waves with variable depth. Wave Motion 50, 80–93 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amick C., Fraenkel L., Toland J.: On the Stokes conjecture for thewave of extreme form. Acta Math. 148, 193–214 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnesen, A.: Non-uniform dependence on initial data for equations of Whitham type, 2016. arXiv:1602.00250

  4. Bhatia R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  5. Blasco O., Pott S.: Operator-valued dyadic BMO spaces. J. Oper. Theory 63, 333–347 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Bruell G., Ehrnström M., Pei L.: Symmetry and decay of traveling wave solutions to the Whitham equation. J. Differ. Equ. 262, 4232–4254 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Buffoni, B., Toland, J.F.: Analytic theory of global bifurcation. An introduction., Princeton University Press, 2003

  8. Carter, J.D.: Bidirectional Whitham equations as models of waves on shallow water, 2017. arXiv:1705.06503

  9. Claassen,K.M., Johnson,M.A.: Numerical bifurcation and spectral stability of wave trains in bidirectional whitham models, 2017. arXiv:1710.09950

  10. Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallowwater equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deconinck B., Trichtchenko O.: High-frequency instabilities of small-amplitude solutions of Hamiltonian PDEs. Discrete Contin. Dyn. Syst. 37, 1323–1358 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ehrnström, M., Escher, J., Pei, L.: A note on the localwell-posedness for the Whitham equation. Elliptic and Parabolic Equations, vol. 119 of Springer Proceedings in Mathematics and Statistics, Springer, Cham, 63–75, 2015

  13. Ehrnström M., Groves M., Wahlén E.: On the existence and stability of solitary wave solutions to a class of evolution equations of whitham type. Nonlinearity 25, 1–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ehrnström M., Kalisch H.: Traveling waves for theWhitham equation. Differ. Integral Equ. 22, 1193–1210 (2009)

    MATH  Google Scholar 

  15. Ehrnström, M., Kalisch, H.: Global bifurcation for the Whitham equation. Math. Model. Nat. Phenom., 7 (2013)

  16. Ehrnström, M., Pei, L., Wang Y.: A conditional well-posedness result for the bidirectional whitham equation, 2017. arXiv:1708.04551

  17. Ehrnström, M., Wahlén, E.: On Whitham’s conjecture of a highest cusped wave for a nonlocal dispersive shallow water wave equation, 2015. arXiv:1602.05384

  18. Hur V., Johnson M.: Modulational instability in the Whitham equation with surface tension and vorticity. Nonlinear Anal. Theory Methods Appl. 129, 104–118 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hur, V., Johnson, M.: Modulational instabiliy in the Whitham equation for water waves. Stud. Appl. Math. 134 (2015)

  20. Hur V.M.: Wave breaking in the Whitham equation. Adv. Math. 317, 410–437 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Johnson M.: Stability of small periodic waves in fractional kdv type equations. SIAM J. Math. Anal 45, 2597–3228 (2013)

    Article  MathSciNet  Google Scholar 

  22. Kielhöfer H.: Bifurcation Theory, vol. 156 of Applied Mathematical Sciences. Springer, New York (2004)

    Google Scholar 

  23. Klein C., Linares F., Pilod D., Saut J.-C.: On Whitham and related equations. Stud. Appl. Math. 140, 133–177 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lannes D.: The Water Waves Problem Mathematical Analysis and Asymptotics. American Mathematical Society, Providence (2013)

    MATH  Google Scholar 

  25. MacKay R., Saffman P.: Stability of water waves. Proc. R. Soc. Lond. Ser. A, 406, 115–125 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Moldabayev D., Kalisch H., Dutykh D.: The Whitham equation as a model for surface water waves. Phys. D 309, 99–107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nilsson, D., Wang, Y.: In preparation.

  28. Oberhettinger F.: Tables of Fourier Transforms and Fourier Transforms of Distributions. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  29. Pandey, A.: Comparison of modulational instabilities in full-dispersion shallow water models, preprint, 2017. arxiv:1708.00547

  30. Sanford N., Kodama K., Carter J., Kalisch H.: Stability of traveling wave solutions to the Whitham equation. Phys. Lett. A 378, 2100–2107 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Saut J.-C., Wang C., Xu L.: The Cauchy problem on large time for surface-waves type Boussinesq systems II. SIAM J. Math. Anal. 49, 2321–2386 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Saut, J.-C., Xu, L.: Well-posedness on large time for a modified full dispersion system of surface waves. J. Math. Phys., 53,115606 23 2012

  33. Taylor M.E.: Partial Differential Equations III Nonlinear Equations, 2nd ed. Springer, Berlin. (2011)

    Book  Google Scholar 

  34. TrilloS. Klein M., Clauss G.F., Onorato M.: Observation of dispersive shock waves developing from initial depressions in shallow water. Phys. D 333, 276–284 (2016)

    Article  MathSciNet  Google Scholar 

  35. Whitham G.B.: Linear and Nonlinear Waves. Wiley, London (1999)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew A. Johnson.

Additional information

Communicated by N. Masmoudi

ME was supported by Grant Nos. 231668 and 250070 from the Research Council of Norway; MJ was supported by the National Science Foundation under Grants DMS-1614785 and DMS-1211183; KC was supported by the National Science Foundation under Grant DMS-1211183.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehrnström, M., Johnson, M.A. & Claassen, K.M. Existence of a Highest Wave in a Fully Dispersive Two-Way Shallow Water Model. Arch Rational Mech Anal 231, 1635–1673 (2019). https://doi.org/10.1007/s00205-018-1306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1306-5

Navigation