Skip to main content
Log in

Nonuniqueness for the Kinetic Fokker–Planck Equation with Inelastic Boundary Conditions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We describe the structure of solutions of the kinetic Fokker–Planck equations in domains with boundaries near the singular set in one-space dimension. We study in particular the behaviour of the solutions of this equation for inelastic boundary conditions which are characterized by means of a coefficient r describing the amount of energy lost in the collisions of the particles with the boundaries of the domain. A peculiar feature of this problem is the onset of a critical exponent rc which follows from the analysis of McKean (J Math Kyoto Univ 2:227–235 1963) of the properties of the stochastic process associated to the Fokker–Planck equation under consideration. In this paper, we prove rigorously that the solutions of the considered problem are nonunique if rrc and unique if \({r_{c} < r \leqq 1.}\) In particular, this nonuniqueness explains the different behaviours found in the physics literature for numerical simulations of the stochastic differential equation associated to the Fokker–Planck equation. In the proof of the results of this paper we use several asymptotic formulas and computations in the companion paper (Hwang in Q Appl Math 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich M., Stegun I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1974)

    Google Scholar 

  2. Bramanti M., Cupini G., Lanconelli A., Priola E.: Global L p estimates for degenerate Ornstein–Uhlenbeck operators. Math. Z. 266, 789–816 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezis H.: Functional Analysis, Sobolev spaces and Partial Differential Equations. Springer, Berlin (2011)

    MATH  Google Scholar 

  4. Cinti C., Nystrom K., Polidoro S.: A note on Harnack inequalities and propagation set for a class of hypoelliptic operators. Potential Anal. 33, 341–354 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Friedman A.: Partial Differential Equations of Parabolic Type. R.E. Krieger Publishing Company, New York (1983)

    Google Scholar 

  6. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    MATH  Google Scholar 

  7. Guo Y.: Regularity for the Vlasov equation in a half space. Indiana Univ. Math. J. 43(1), 255–320 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo Y.: Singular solutions of the Vlasov–Maxwell system on a half line. Arch. Ration. Mech. Anal. 131(3), 241–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hörmander L.: Linear Partial Differential Operators. Springer, Berlin (1963)

    Book  MATH  Google Scholar 

  10. Hörmander L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hwang H.J.: Regularity for the Vlasov–Poisson system in a convex domain. SIAM J. Math. Anal. 36, 121–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hwang H.J., Velázquez J.L.: Global existence for the Vlasov–Poisson system in bounded domains. Arch. Ration. Mech. Anal. 195(3), 763–796 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hwang H.J., Jang J., Jung J.: The Fokker–Planck equation with absorbing boundary conditions in bounded domains. SIAM J. Math. Anal. 50(2), 2194–2232 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hwang H.J., Jang J., Jung J.: On the kinetic Fokker–Planck equation in the half-space with absorbing barriers. Indiana Univ. Math. J. 64(6), 1767–1804 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hwang H.J., Jang J., Velazquez J.L.: The Fokker–Planck equation with absorbing boundary conditions. Arch. Ration. Mech. Anal. 214(1), 183–233 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hwang, H.J., Jang, J., Velazquez, J.L.: On the structure of the singular set for the kinetic Fokker–Planck equation in domains with boundaries. Q. Appl. Math. (2018). https://doi.org/10.1090/qam/1507

  17. Kim C.: Formation and propagation of discontinuity for Boltzmann equation in non-convex domains. Comm. Math. Phys. 308(3), 641–701 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kogoj A.E., Lanconelli E.: An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations. Mediterr. J. Math. 1, 51–80 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolmogorov A.: Mathematics Zufällige Bewegungen (Zur Theorie der Brownschen Bewegung). Ann. Math. 35(1), 116–117 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liggett T.M.: Interacting Particle Systems. Reprint of the 1985 Original, Classics in Mathematics. Springer, Berlin (2005)

    Google Scholar 

  21. Lunardi A.: Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in R n. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24(1), 133–164 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Lanconelli, E., Pascucc, A., Polidoro, S.: Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance. Nonlinear Problems in Mathematical Physics and Related Topics, II, vol. 2, Kluwer Plenum, New York, 243–265, 2002

  23. Lanconelli E., Polidoro S.: On a class of hypoelliptic evolution operators. Rend. Semin. Mater. Torino 52(1), 29–63 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Manfredini M.: The Dirichlet problem for a class of ultraparabolic equation. Adv. Differ. Equ. 2, 831–866 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Milnor J.: Topology from a Differential Viewpoint. University of Virginia Press, Virginia (1965)

    MATH  Google Scholar 

  26. McKean H.P. Jr.: A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2, 227–235 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nier, F.: Boundary conditions and subelliptic estimates for geometric Kramers–Fokker–Planck operators on manifolds with boundaries, vol. 252. American Mathematical Society, 144 pp (2018)

  28. Øksendal B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  29. Pascucci A.: Hölder regularity for a Kolmogorov equation. Trans. AMS. 355(3), 901–924 (2003)

    Article  MATH  Google Scholar 

  30. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer, New York (1983)

    MATH  Google Scholar 

  31. Polidoro, S.: A global lower bound for the fundamental solution of Kolmogorov–Fokker–Planck equations. Arch. Ration. Mech. Anal. 137, 321–34 (1997)

  32. Rothschild L.P., Stein E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(1), 247–320 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stroock D., Varadhan S.R.S.: On degenerate elliptic-parabolic operators of second order and their associated diffusions. Comm. Pure Appl. Math. 25(6), 651–713 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Hausdorff Center for Mathematical Sciences of the University of Bonn and the Pohang Mathematics Institute, where parts of this work were done. H.J.H. is partly supported by the Basic Science Research Program (NRF-2017R1E1A1A03070105) through the National Research Foundation of Korea. J.J. is supported in part by NSF Grants DMS-1608492 and DMS-1608494. The authors acknowledge support through the CRC 1060 “The mathematics of emergent effects at the University of Bonn”, which is funded through the German Science Foundation (DFG). We thank Seongwon Lee for helping with the figures in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Ju Hwang.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, H.J., Jang, J. & Velázquez, J.J.L. Nonuniqueness for the Kinetic Fokker–Planck Equation with Inelastic Boundary Conditions. Arch Rational Mech Anal 231, 1309–1400 (2019). https://doi.org/10.1007/s00205-018-1299-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1299-0

Navigation