Skip to main content
Log in

Gevrey Smoothing for Weak Solutions of the Fully Nonlinear Homogeneous Boltzmann and Kac Equations Without Cutoff for Maxwellian Molecules

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

It has long been suspected that the non-cutoff Boltzmann operator has similar coercivity properties to the fractional Laplacian. This has led to the hope that the homogenous Boltzmann equation enjoys similar regularity properties to the heat equation with a fractional Laplacian. In particular, the weak solution of the fully nonlinear non-cutoff homogenous Boltzmann equation with initial datum in \({L^1_2(\mathbb{R}^d)\cap L {\rm log} L(\mathbb{R}^d)}\), i.e., finite mass, energy and entropy, should immediately become Gevrey regular for strictly positive times. We prove this conjecture for Maxwellian molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre, R.: Integral estimates for a linear singular operator linked with the Boltzmann operator. I. Small singularities \({0 < v < 1}\). Indiana Univ. Math. J. 55(6), 1975–2022, 2006 doi:10.1512/iumj.2006.55.2861

  2. Alexandre, R.: A review of Boltzmann equation with singular kernels. Kinet. Relat. Models 2(4), 551–646, 2009 doi:10.3934/krm.2009.2.551

  3. Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152(4), 327–355, 2000. doi:10.1007/s002050000083

  4. Alexandre, R., El Safadi, M.: Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. I. non-cutoff case and Maxwellian molecules. Math. Models Methods Appl. Sci. 15(6), 907–920, 2005. doi:10.1142/S0218202505000613

  5. Alexandre, R., Elsafadi, M.: Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. II. Non cutoff case and non Maxwellian molecules. Discrete Contin. Dyn. Syst. Ser. A 24(1), 1–11, 2009. doi:10.3934/dcds.2009.24.1

  6. Alexandre, R., He, L.: Integral estimates for a linear singular operator linked with Boltzmann operators. II. High singularities \({1 \leq \nu < 2}\). Kinet. Relat. Models 1(4), 491–513, 2008. doi:10.3934/krm.2008.1.491

  7. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.J., Yang, T.: Uncertainty principle and kinetic equations. J. Funct. Anal. 255(8), 2013–2066, 2008. doi:10.1016/j.jfa.2008.07.004

  8. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.J., Yang, T.: Regularizing effect and local existence for the non-cutoff Boltzmann equation. Arch. Ration. Mech. Anal. 198(1), 39–123, 2010. doi:10.1007/s00205-010-0290-1

  9. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.J., Yang, T.: Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff. Kyoto J. Math. 52(3), 433–463, 2012. doi:10.1215/21562261-1625154

  10. Arkeryd, L.: On the Boltzmann equation. I: existence. Arch. Ration. Mech. Anal. 45(1), 1–16, 1972. doi:10.1007/BF00253392

  11. Arkeryd, L.: Intermolecular forces of infinite range and the Boltzmann equation. Arch. Ration. Mech. Anal. 77(1), 11–21, 1981. doi:10.1007/BF00280403

  12. Barbaroux, J.M., Hundertmark, D., Ried, T., Vugalter, S.: Strong smoothing for the non-cutoff homogeneous Boltzmann equation for maxwellian molecules with Debye–Yukawa type interaction. Kinet. Relat. Models. 10(4), 901–924, 2017. doi:10.3934/krm.2017036

  13. Bobylev, A.V.: Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwellian gas. Theor. Math. Phys. 60(2), 820–841, 1984. doi:10.1007/BF01018983

  14. Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolecülen. Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse, Sitzungsberichte, Abteilung IIa 66, 275–370, 1872. doi:10.1017/CBO9781139381420.023

  15. Chen, Y., He, L.: Smoothing estimates for Boltzmann equation with full-range interactions: spatially homogeneous case. Arch. Ration. Mech. Anal. 201(2), 501–548, 2011. doi:10.1007/s00205-010-0393-8

  16. Chen, Y., He, L.: Smoothing estimates for Boltzmann equation with full-range interactions: Spatially inhomogeneous case. Arch. Ration. Mech. Anal. 203(2), 343–377, 2012. doi:10.1007/s00205-011-0482-3

  17. Desvillettes, L.: About the regularizing properties of the non-cut-off Kac equation. Commun. Math. Phys. 168(2), 417–440, 1995. doi:10.1007/BF02101556

  18. Desvillettes, L.: Regularization properties of the 2-dimensional non radially symmetric non cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules. Transp. Theory Stat. Phys. 26(3), 341–357, 1997. doi:10.1080/00411459708020291

  19. Desvillettes, L.: Boltzmann’s kernel and the spatially homogeneous Boltzmann equation. Rivista di Matematica della Università à di Parma (6) 4*, 1–22, 2001. http://www.rivmat.unipr.it/vols/2001-4s/indice.html

  20. Desvillettes, L.: About the use of Fourier transform for the Boltzmann equation. Rivista di Matematica della Università à di Parma (7) 2*, 1–99, 2003. http://www.rivmat.unipr.it/vols/2003-2s/indice.html

  21. Desvillettes, L., Furioli, G., Terraneo, E.: Propagation of Gevrey regularity for solutions of the Boltzmann equation for Maxwellian molecules. Trans. Am. Math. Soc. 361(4), 1731–1747, 2009. doi:10.1090/S0002-9947-08-04574-1

  22. Desvillettes, L., Mouhot, C.: Stability and uniqueness for the spatially homogeneous boltzmann equation with long-range interactions. Arch. Ration. Mech. Anal. 193(2), 227–253, 2009. doi:10.1007/s00205-009-0233-x

  23. Desvillettes, L., Wennberg, B.: Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Commun. Partial Differ. Equ. 29(1–2), 133–155, 2004. doi:10.1081/PDE-120028847

  24. DeVore, R.A., Lorentz, G.G.: Constructive Approximation, Grundlehren der mathematischen Wissenschaften, vol. 303. Springer, Berlin, 1993. doi:10.1007/978-3-662-02888-9

  25. Gautschi, W.: On inverses of Vandermonde and confluent Vandermonde matrices. Numerische Mathematik 4(1), 117–123, 1962. doi:10.1007/BF01386302

  26. Glangetas, L., Najeme, M.: Analytical regularizing effect for the radial and spatially homogeneous Boltzmann equation. Kinet. Relat. Models 6(2), 407–427 2013. doi:10.3934/krm.2013.6.407

  27. Goudon, T.: On Boltzmann equations and Fokker–Planck asymptotics: Influence of grazing collisions. J. Stat. Phys. 89(3–4), 751–776, 1997. doi:10.1007/BF02765543

  28. Kac, M.: Probability and Related Topics in Physical Sciences, With special lectures by G. E. Uhlenbeck, A. R. Hibbs, and B. van der Pol. Lectures in Applied Mathematics. Proceedings of the Summer Seminar, Boulder, Colo. 1957, Vol. I., 1 edn. Interscience Publishers, London-New York 1959

  29. Karlin, S.: Interpolation properties of generalized perfect splines and the solutions of certain extremal problems. I. Trans. Am. Math. Soc. 206, 25–66, 1975. doi:10.2307/1997146

  30. Lekrine, N., Xu, C.J.: Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac’s equation. Kinet. Relat. Models 2(4), 647–666, 2009. doi:10.3934/krm.2009.2.647

  31. Lerner, N., Morimoto, Y., Pravda-Starov, K., Xu, C.J.: Gelfand–Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff. J. Differ. Equ. 256(2), 797–831, 2014. doi:10.1016/j.jde.2013.10.001

  32. Lerner, N., Morimoto, Y., Pravda-Starov, K., Xu, C.J.: Gelfand-Shilov and Gevrey smoothing effect for the spatially inhomogeneous non-cutoff Kac equation. J. Funct. Anal.269(2), 459–535, 2015. doi:10.1016/j.jfa.2015.04.017

  33. Levermore, C.D., Oliver, M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ.133(2), 321–339, 1997. doi:10.1006/jdeq.1996.3200

  34. Lin, S.Y.: Gevrey regularity for the noncutoff nonlinear homogeneous Boltzmann equation with strong singularity. Abst. Appl. Anal. p. Art. ID 584169, 2014. doi:10.1155/2014/584169

  35. Lions, P.L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. I, II. J. Math. Kyoto Univ. 34(2), 391–427, 429–461, 1994

  36. Lions P.L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. III. J. Math. Kyoto Univ. 34(3), 539–584 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Annales de l’Institut Henri Poincare (C) Nonlinear Analysis 16(4), 467–501, 1999. doi:10.1016/s0294-1449(99)80025-0

  38. Morimoto, Y., Ukai, S.: Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff. J. Pseudo-Differ. Oper. Appl. 1(1), 139–159, 2010. doi:10.1007/s11868-010-0008-z

  39. Morimoto, Y., Ukai, S., Xu, C.J., Yang, T.: Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete Contin. Dyn. Syst. 24(1), 187–212, 2009. doi:10.3934/dcds.2009.24.187

  40. Morimoto, Y., Xu, C.J.: Ultra-analytic effect of Cauchy problem for a class of kinetic equations. J. Differ. Equ. 247(2), 596–617, 2009. doi:10.1016/j.jde.2009.01.028

  41. Mouhot, C., Villani, C.: Regularity theory for the spatially homogeneous boltzmann equation with cut-off. Arch. Ration. Mech. Anal. 173(2), 169–212, 2004. doi:10.1007/s00205-004-0316-7

  42. Pao, Y.P.: Boltzmann collision operator with inverse-power intermolecular potentials. I, II. Commun. Pure Appl. Math. 27(4), 407–428, 559–581, 1974. doi:10.1002/cpa.3160270402, doi:10.1002/cpa.3160270406

  43. Pinkus, A.: Some extremal properties of perfect splines and the pointwise Landau problem on the finite interval. J. Approx. Theory 23(1), 37–64, 1978. doi:10.1016/0021-9045(78)90077-1

  44. Shadrin, A.: The Landau-Kolmogorov inequality revisited. Discrete Contin. Dyn. Syst. 34(3), 1183–1210, 2014. doi:10.3934/dcds.2014.34.1183

  45. Toscani, G., Villani, C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94(3-4), 619–637, 1999. doi:10.1023/A:A1004508706950

  46. Truesdell C.: On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory. II. J. Ration. Mech. Anal. 5(1), 55–128 (1956)

    MathSciNet  MATH  Google Scholar 

  47. Ukai, S.: Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff. Jpn. J. Appl. Math. 1(1), 141–156, 1984. doi:10.1007/BF03167864

  48. Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143(3), 273–307, 1998. doi:10.1007/s002050050106

  49. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, Vol. 1, pp. 71–305. North-Holland, Amsterdam, 2002. doi:10.1016/S1874-5792(02)80004-0

  50. Yin, Z., Zhang, T.F.: Gevrey regularity for solutions of the non-cutoff Boltzmann equation: The spatially inhomogeneous case. Nonlinear Anal. Real World Appl. 15, 246–261, 2014. doi:10.1016/j.nonrwa.2013.08.003

  51. Zhang, T.F., Yin, Z.: Gevrey regularity of spatially homogeneous Boltzmann equation without cutoff. J. Differ. Equ. 253(4), 1172–1190, 2012. doi:10.1016/j.jde.2012.04.023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Hundertmark.

Additional information

Communicated by F. Otto

© 2017 by the authors. Faithful reproduction of this article, in its entirety, by any means is permitted for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbaroux, JM., Hundertmark, D., Ried, T. et al. Gevrey Smoothing for Weak Solutions of the Fully Nonlinear Homogeneous Boltzmann and Kac Equations Without Cutoff for Maxwellian Molecules. Arch Rational Mech Anal 225, 601–661 (2017). https://doi.org/10.1007/s00205-017-1101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1101-8

Navigation