Skip to main content
Log in

Area Minimizing Discs in Metric Spaces

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We solve the classical problem of Plateau in the setting of proper metric spaces. Precisely, we prove that among all disc-type surfaces with prescribed Jordan boundary in a proper metric space there exists an area minimizing disc which moreover has a quasi-conformal parametrization. If the space supports a local quadratic isoperimetric inequality for curves we prove that such a solution is locally Hölder continuous in the interior and continuous up to the boundary. Our results generalize corresponding results of Douglas Radò and Morrey from the setting of Euclidean space and Riemannian manifolds to that of proper metric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E., Fusco N.: Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86((2), 125–145 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Allcock D.: An isoperimetric inequality for the Heisenberg groups. Geom. Funct. Anal. 8(2), 219–233 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almgren, Jr., F.J.: Almgren’s Big Regularity Paper: Q-Valued Functions Minimizing Dirichlet’S Integral and the Regularity of Area-Minimizing Rectifiable Currents up to Codimension 2. World Scientific Monograph Series in Mathematics, Vol. 1. World Scientific Publishing Co., Inc., River Edge, 2000. (With a preface by Jean E. Taylor and Vladimir Scheffer)

  4. Alvarez Paiva, J.C., Thompson, A.C.: Volumes on normed and Finsler spaces. A sampler of Riemann–Finsler geometry, Vol. 50 of Math. Sci. Res. Inst. Publ., pp. 1–48. Cambridge Univ. Press, Cambridge, 2004

  5. Ambrosio L.: Metric space valued functions of bounded variation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17(3), 439–478 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L., De Lellis, C., Schmidt, T.: Partial regularity for mass-minimizing currents in hilbert spaces. J. Reine Angew. Math. (To appear)

  7. Ambrosio L., Kirchheim B.: Currents in metric spaces. Acta Math. 185(1), 1–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambrosio L., Kirchheim B.: Rectifiable sets in metric and Banach spaces. Math. Ann. 318(3), 527–555 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ambrosio L., Schmidt T.: Compactness results for normal currents and the Plateau problem in dual Banach spaces. Proc. Lond. Math. Soc. (3) 106(5), 1121–1142 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ambrosio, L., Tilli, P. Topics on Analysis in Metric Spaces, Vol. 25 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004

  11. Bacher K., Sturm K.-T.: Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal. 259(1), 28–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ball, K.: An elementary introduction to modern convex geometry. Flavors of Geometry, Vol. 31 of Math. Sci. Res. Inst. Publ., pp. 1–58. Cambridge Univ. Press, Cambridge, 1997

  13. Balogh, Z. M., Monti, R., Tyson, J. T.: Frequency of Sobolev and quasiconformal dimension distortion. J. Math. Pures Appl. (9) 99(2), 125–149 (2013)

  14. Bernig A.: Centroid bodies and the convexity of area functionals. J. Differ. Geom. 98(3), 357–373 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Bridson, M. R., Haefliger, A.: Metric Spaces of Non-Positive Curvature, Vol. 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, 1999

  16. Burago, D., Ivanov, S.: On asymptotic volume of Finsler tori, minimal surfaces in normed spaces, and symplectic filling volume. Ann. of Math. (2). 156(3), 891–914 (2002)

  17. Burago D., Ivanov S.: Minimality of planes in normed spaces. Geom. Funct. Anal. 22(3), 627–638 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. David, G.: Should we solve plateau’s problem again? Advances in Analysis. The Legacy of Elias M. Stein. Ed. Fefferman, Charles and Ionescu, A.D. and Phong, D.H. and Wainger, S, Vol. 50 of Princeton Mathematical Series, pp. 108–145. Princeton University Press, Princeton 2014

  19. Dierkes, U., Hildebrandt, S., Sauvigny, F.: Minimal surfaces, Second ed., Vol. 339 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2010. (With assistance and contributions by A. Küster and R. Jakob)

  20. Douglas J.: Solution of the problem of Plateau. Trans. Am. Math. Soc. 33(1), 263–321 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems, Vol. 1. North-Holland Publishing Co., Amsterdam, 1976. (Translated from the French, Studies in Mathematics and its Applications)

  22. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992

  23. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York Inc., New York, 1969

  24. Federer H., Fleming W.H.: Normal and integral currents. Ann. of Math. (2) 72, 458–520 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gigli, N.: The splitting theorm in non-smooth context. Preprint arXiv:1302.5555

  26. Gigli, N., Mondino, A., Rajala, T.: Euclidean spaces as weak tangents of infinitesimally hilbertian metric measure spaces with ricci curvature bounded below. J. Reine Angew. Math. (To appear).

  27. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin, 2001. (Reprint of the 1998 edition)

  28. Gromov M.: Filling Riemannian manifolds. J. Differential Geom. 18(1), 1–147 (1983)

    MathSciNet  MATH  Google Scholar 

  29. Hajłasz P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5(4), 403–415 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev Spaces on Metric Measure Spaces, Vol. 27 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2015

  31. Heinonen J., Koskela P., Shanmugalingam N., Tyson J.T.: Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math. 85, 87–139 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Isbell J.R.: Six theorems about injective metric spaces. Comment. Math. Helv. 39, 65–76 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ivanov S.V.: Volumes and areas of Lipschitz metrics. Algebra i Analiz. 20(3), 74–111 (2008)

    MathSciNet  Google Scholar 

  34. Karmanova M.B.: Area and co-area formulas for mappings of the Sobolev classes with values in a metric space. Sibirsk. Mat. Zh. 48(4), 778–788 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Kinnunen J.: Higher integrability with weights. Ann. Acad. Sci. Fenn. Ser. A I Math. 19(2), 355–366 (1994)

    MathSciNet  MATH  Google Scholar 

  36. Kirchheim, B.: Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Am. Math. Soc. 121(1), 113–123 (1994)

  37. Korevaar N.J., Schoen R.M.: Sobolev spaces and harmonic maps for metric space targets. Commun. Anal. Geom. 1(3–4), 561–659 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lang U.: Injective hulls of certain discrete metric spaces and groups. J. Topol. Anal. 5(3), 297–331 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Logaritsch, P., Spadaro, E.: A representation formula for the p-energy of metric space-valued Sobolev maps. Commun. Contemp. Math. 14(6), 1250043, 10 (2012)

  40. Lytchak A.: Differentiation in metric spaces. Algebra i Analiz. 16(6), 128–161 (2004)

    MathSciNet  Google Scholar 

  41. Lytchak, A., Wenger, S.: Isoperimetric characterization of upper curvature bounds. (In preparation)

  42. Lytchak, A., Wenger, S.: Energy and area minimizers in metric spaces. Adv. Calc. Var. (2016). Online first, doi:10.1515/acv-2015-0027

  43. Lytchak, A., Wenger, S.: Intrinsic structure of minimal discs in metric spaces. (2016). Preprint arXiv:1602.06755v1

  44. Mese C., Zulkowski P.R.: The Plateau problem in Alexandrov spaces. J. Differ. Geom. 85(2), 315–356 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Morgan F., Ritoré M.: Isoperimetric regions in cones. Trans. Am. Math. Soc. 354(6), 2327–2339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Morrey, Jr., C.B.: The problem of Plateau on a Riemannian manifold. Ann. Math. (2). 49, 807–851 (1948)

  47. Nikolaev, I.G.: Solution of the Plateau problem in spaces of curvature at most K. Sibirsk. Mat. Zh. 20(2), 345–353, 459 (1979)

  48. Overath P., von der Mosel H.: Plateau’s problem in Finsler 3-space. Manuscripta Math. 143(3–4), 273–316 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Perel’man, G.Y., Petrunin, A.M.: Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem. Algebra i Analiz. 5(1), 242–256 (1993)

  50. Radó T.: On Plateau’s problem. Ann. Math. (2) 31((3), 457–469 (1930)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Reshetnyak, Y.G.: Sobolev classes of functions with values in a metric space. Sibirsk. Mat. Zh. 38(3), 657–675, iii–iv (1997)

  52. Reshetnyak Y.G.: Sobolev classes of functions with values in a metric space. II. Sibirsk. Mat. Zh. 45(4), 855–870 (2004)

    MATH  Google Scholar 

  53. Reshetnyak Y.G.: On the theory of Sobolev classes of functions with values in a metric space. Sibirsk. Mat. Zh. 47(1), 46–168 (2006)

    MathSciNet  MATH  Google Scholar 

  54. Tukia, P.: The planar Schönflies theorem for Lipschitz maps. Ann. Acad. Sci. Fenn. Ser. A I Math. 51, 49–72 (1980)

  55. Wenger S.: Isoperimetric inequalities of Euclidean type in metric spaces. Geom. Funct. Anal. 15(2), 534–554 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wenger S.: Flat convergence for integral currents in metric spaces. Calc. Var. Partial Differ. Equ. (2, 139–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wenger S.: Characterizations of metric trees and Gromov hyperbolic spaces. Math. Res. Lett. 15(5), 1017–1026 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Wenger S.: Gromov hyperbolic spaces and the sharp isoperimetric constant. Invent. Math. 171(1), 227–255 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Wenger, S.: Plateau’s problem for integral currents in locally non-compact metric spaces. Adv. Calc. Var. 7(2), 227–240 (2014)

  60. Ziemer, W. P.: Weakly Differentiable Functions, Vol. 120 of Graduate Texts in Mathematics. Springer, New York, 1989. (Sobolev spaces and functions of bounded variation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wenger.

Additional information

Communicated by C. De Lellis

S.Wenger was partially supported by Swiss National Science Foundation Grant 153599.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lytchak, A., Wenger, S. Area Minimizing Discs in Metric Spaces. Arch Rational Mech Anal 223, 1123–1182 (2017). https://doi.org/10.1007/s00205-016-1054-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1054-3

Navigation