Skip to main content
Log in

Semi-Group Theory for the Stokes Operator with Navier-Type Boundary Conditions on L p-Spaces

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this article we consider the Stokes problem with Navier-type boundary conditions on a domain \({\Omega}\), not necessarily simply connected. Since, under these conditions, the Stokes problem has a non trivial kernel, we also study the solutions lying in the orthogonal of that kernel. We prove the analyticity of several semigroups generated by the Stokes operator considered in different functional spaces. We obtain strong, weak and very weak solutions for the time dependent Stokes problem with the Navier-type boundary condition under different hypotheses on the initial data u 0 and external force f. Then, we study the fractional and pure imaginary powers of several operators related with our Stokes operators. Using the fractional powers, we prove maximal regularity results for the homogeneous Stokes problem. On the other hand, using the boundedness of the pure imaginary powers, we deduce maximal \({L^{p}-L^{q}}\) regularity for the inhomogeneous Stokes problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe K., Giga Y.: Analyticity of the Stokes semigroup in spaces of bounded functions. Acta. Math. 211, 1–46 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  3. Agmon S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Commun. Pure Appl. Math. 15, 119–147 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Al Baba, H.: Théorie des semi-groupes pour les équations de Stokes et de Navier Stokes avec des conditions aux limites de type Navier. PhD Thesis (2015). http://www.theses.fr/2015PAUU3008

  5. Al Baba, H., Amrouche, C., Escobedo, M.: Analyticity of the semi-group generated by the Stokes operator with Navier-type boundary conditions on L p-spaces. In: Rădulescu, V.D., Sequeira, A., Solonnikov, V. A. (eds.) Recent Advances in Partial Differential Equations and Applications, Contemporary Mathematics, vol. 666, pp. 23–40. American Mathematical Society, Providence, RI, 2016

  6. Amirat Y., Bresch D., Lemoine J., Simon J.: Effect of rugosity on a flow governed by stationary Navier–Stokes equations. Q. Appl. Math. 59(4), 769–785 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amman H.: Linear and Quasilinear Parabolic Equations. Birkhauser, Basel (1995)

    Book  Google Scholar 

  8. Amann H.: On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2(1), 16–98 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Amrouche C., Bernardi C., Dauge M., Girault V.: Vector potential in three dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Amrouche, C., Moussaoui, M., Nguyen, H.H.: Very weak solutions for the Laplace equation (Work in progress)

  11. Amrouche C., Penel P., Seloula N.: Some remarks on the boundary conditions in the theory of Navier–Stokes equations. Annales Mathématiques Blaise Pascal. 20, 133–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Amrouche C., Seloula N.: On the Stokes equations with the Navier-type boundary conditions. Differ. Equ. Appl. 3, 581–607 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Amrouche C., Seloula N.: L p-theory for vector potentials and Sobolev’s inequalities for vector fields: application to the Stokes equations with pressure boundary conditions. Math. Models Methods Appl. Sci. 23, 37–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Barbu V.: Nonlinear Semi-Groups and Differential Equations in Banach Space. Noordhoff international publishing, Leyden (1976)

    Book  Google Scholar 

  15. Beavers G.S., Joseph D.D.: Boundary conditions at a naturally permeable wall. J. Fluid. Mech. 30(01), 197–207 (1967)

    Article  ADS  Google Scholar 

  16. Benedek A., Calderón A.P., Panzone R.: Convolution operators on Banach-space valued functions. Proc. Nat. Acad. Sci. USA 48, 356–365 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Bernardi C., Chorfi N.: Spectral discretization of the vorticity, velocity and pressure formulation of the Stokes equations. SIAM J. Numer. Anal. 44(2), 826–850 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Borchers W., Miyakawa T.: L 2-decay for the Navier–Stokes flows in half-spaces. Math. Ann. 282, 139–155 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Borchers W., Miyakawa T.: Algebraic L 2 decay for Navier–Stokes flows in exterior domains. Acta. Math. 165, 189–227 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bucur D., Feireisl E., Nečasová Š.: Boundary behavior of viscous fluids: Influence of wall roughness and friction-driven boundary conditions. Arch. Ration. Mech. Anal. 197(1), 117–138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bucur D., Feireisl E., Nečasová Š., Wolf J.: On the asymptotic limit of the Navier–Stokes system on domains with rough boundaries. J. Differ. Equ. 244(11), 2890–2908 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Bulicek M., Malek A., Rajagopal K.R.: Navier’s slip and evolutionary Navier–Stokes-likes systems with pressure and share-rate dependent viscosity. Indiana Univ. Math. J. 56(1), 51–85 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Burkholder, D.L.: Martingales and Fourier analysis in Banach spaces. In: Probability and Analysis (Varenna 1985), Lect. Notes Math., vol. 1206, pp. 61–108. Springer, Berlin 1986

  24. Brezis H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Universitext (2011)

    MATH  Google Scholar 

  25. Casado-Díaz J., Fernández-Cara E., Simon J.: Why viscous fluids adhere to rugose walls: A mathematical explanation. J. Differ. Equ. 189, 526–537 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Casado-Díaz J., Luna-Laynez M., Suárez-Grau F.J.: A viscous fluid in a thin domain satisfying the slip condition on a slightly rough boundary. C. R. Acad. Sci. Paris Ser. I. 348, 967–971 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Coulhon T., Lamberton D.: Quelques remarques sur la régularité L p du semi-groupe de Stokes. Commun. Partial Differ. Equ. 17, 287–304 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Denk R., Dore G., Hieber M., Pruss J., Venni A.: New thoughts on old results of R.T. Seeley. Math. Ann. 328, 545–583 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dore G., Venni A.: On the closedness of the sum of two closed operators. Math. Z. 196, 189–201 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Engel K., Nagel R.: One Parameter Semi-Groups for Linear Evolution Equation. Springer, New-York (1983)

    Google Scholar 

  31. Farwig, R., Galdi, G.P., Sohr, H.: Very weak solutions for stationary and instationary Navier–Stokes equations with nonhomogeneous data. In: Brezis,H., Chipot,M., Escher, J. (eds.) Progress in Nonlinear Differential Equations and Their Applications, vol. 64, pp. 113–136. Birkhauser, Basel, 2005

  32. Farwig R., Galdi G.P., Sohr H.: A new class Of week solutions of the Navier–Stokes equations with nonhomogeneous Data. J. Math. Fluid Mech. 8(3), 423–444 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Farwig R., Galdi G.P., Sohr H.: Very weak solutions and large uniqueness classes of stationary Navier–Stokes equations in bounded domains of \({{\mathbb{R}}^{2}}\). J. Differ. Equ. 227(2), 564–580 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Farwig R., Kozono H., Sohr H.: Very weak solutions of the Navier–Stokes equations in exterior domains with nonhomogeneous data. J. Math. Soc. Jpn. 59, 127–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Farwig R., Sohr H.: Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Jpn. 46(4), 607–643 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Farwig R., Sohr H.: Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier–Stokes equations in \({\mathbb{R}^{n}}\). Czechoslov. Math. J. 59(134)(1), 61–79 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Galdi G.P., Simader Chr., Sohr H.: A class of solutions to stationary Stokes and Navier–Stokes equations with boundary data in \({{\mathbf{\hat{W}}}^{-1/q,q}}\). Math. Ann. 331(1), 41–74 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Geissert M., Heck H., Trunck C.: \({{\mathcal{H}}^{\infty}}\)-calculus for a system of Laplace operators with mixed order boundary conditions. DCDS-Series S. 6(5), 1259–1275 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Giga Y.: Analyticity of the semi-group generated by the Stokes operator in L r-spaces. Math. Z. 178(3), 297–329 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  40. Giga Y.: Domains of fractional powers of the Stokes in L rspaces. Arch. Ration. Mech. Anal. 89(3), 251–265 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  41. Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62(2), 186–212 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Giga Y., Sohr H.: On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(1), 103–130 (1989)

    MathSciNet  Google Scholar 

  43. Giga Y., Sohr H.: Abstract L p-estimates for the Cauchy Problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102(1), 72–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Grisvard, P.: Elliptic problems in nonsmooth domains. Monogr. Stud. Math., vol. 24. Pitman, Boston…1985

  45. Jager W., Mikelic A.: On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60(4), 1111–1127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jager W., Mikelic A.: On the roughness included effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170(1), 96–122 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Kato T.: Fractional powers of dissipative operators. J. Math. Soc. Jpn. 13(3), 246–274 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kato T.: Fractional powers of dissipative operators, II. J. Math. Soc. Jpn. 14(2), 242–248 (1962)

    Article  MATH  Google Scholar 

  49. Kato T.: Strong L p-solutions of the Navier–Stokes equation in \({{\mathbb{R}}^{m}}\), with applications to weak solutions. Math. Z. 187(4), 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  50. Komatsu H.: Fractional powers of operators. Pac. J. Math. 19, 285–346 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lauga, E., Brenner, M.P., Stone, H.A.: Microfluidics: The No-Slip Boundary Condition, Ch. 19 in Springer Handbook of Experimental Fluid Mechanics Springer-Verlag Berlin Heidelberg (2007) by Cameron Tropea, Alexander Yarin, John Foss.

  52. Lions, J-L., Magenes, E.: Problémes aux limites non homogénes et leurs applications, vol. 1. Dunod, Paris, 1968

  53. Mitrea M., Monniaux S.: On the analyticity of the semi-group generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz Subdomains of Riemannian manifolds. Trans. Am. Math. Soc. 361(6), 3125–3157 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mitrea M., Monniaux S.: The non-linear Hodge–Navier–Stokes equations in Lipschitz domains. Differ. Integral Equ. 22(3–4), 339–356 (2009)

    MathSciNet  MATH  Google Scholar 

  55. Miyakawa T.: The L p-approach to the Navier–Stokes equations with the Neumann boundary condition. Hiroshima Math. J. 10(3), 517–537 (1980)

    MathSciNet  MATH  Google Scholar 

  56. Navier C.L.M.H.: Mémoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Inst. 6, 389–416 (1823)

    Google Scholar 

  57. Pazy A.: Semi-Groups of Linear Operators and Applications to Partial Differential Equations. Springer, New-York (1983)

    Book  MATH  Google Scholar 

  58. Rubio de Francia, J.L.: Martingale and integral transforms on Banach space valued functions. In: Probability and Banach spaces (Proceedings, Zaragoza 1985), Lect. Notes Math, vol. 1221, pp. 195–222. Springer, Berlin, 1986

  59. Saal J.: Stokes and Navier Stokes equations with Robin boundary conditions in a half space. J. Math. Fluid Mech. 8(2), 211–241 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Schumacher, K.: The Navier–Stokes equations with low-regularity data in weighted functions spaces. PhD thesis, FB Mathematik, TU Darmstad, 2007

  61. Seeley R.: Norms and domains of the complex powers \({A_{B}z}\). Am. J. Math. 93, 299–309 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  62. Serrin, J.: Mathematical Principles of Classical Fluid Mechanics. Handbuch der Physik, p. 125–263. Springer, Berlin, 1959

  63. Shibata Y., Shimada R.: On a generalized resolvent estimate for the Stokes system with Robin Boundary condition. J. Math. Soc. Jpn. 59(2), 469–519 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Shimada R.: On the \({L^{p}-L^{q}}\) maximal regularity for the Stokes equations Robin boundary condition in a bounded domain. Math. Methods Appl. Sci. 30(3), 257–289 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann Problem in L q-spaces for bounded and exterior domains. Adv. Math. Appl. Sci. 11, 1–35, 1992 (World Scientific)

  66. Sobolevskii P.E.: Coerciveness inequalities for abstract parabolic equations. Dokl. Akad. Nauk SSSR. 157, 52–55 (1964)

    MathSciNet  Google Scholar 

  67. Sobolevskii P.E.: The investigation of the Navier Stokes equations by the methods of the theory of parabolic equations in Banach spaces. Dokl. Akad. Nauk SSSR. 156(4), 745–748 (1964)

    MathSciNet  Google Scholar 

  68. Solonnikov V.A.: Estimates for solutions of nonsatationary Navier–Stokes equation. J. Sov. Math. 8, 467–529 (1977)

    Article  MATH  Google Scholar 

  69. Solonnikov V.A.: L p-estimates for solutions to the initial boundary value problem for the generalized Stokes system in a bounded domain. J. Math. Sci. 105, 2448–2484 (2001)

    Article  MathSciNet  Google Scholar 

  70. Solonnikov V.A.: Estimates of the solutions of model evolution generalized Stokes problem in weighted Holder spaces. J. Math. Sci. (N. Y.) 143(2), 2969–2986 (2007)

    Article  MathSciNet  Google Scholar 

  71. Stokes G.: On the Theories of Internal Friction of Fluids in Motion and of the Equilibrium and Motion of Elastic Solids. Trans. Camb. Phil. Soc. 8, 287–319 (1845)

    Google Scholar 

  72. Taylor M.E.: Partial Differential Equations. Springer, New-York (1996)

    Book  MATH  Google Scholar 

  73. Triebel H.: Interpolation Theory, Functional Spaces, Differential Operators. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  74. Ukai S.: A solution formula for the Stokes equation in \({\mathbb{R}^{n}_{+}}\). Commun. Pure Appl. Math. 40(5), 611–621 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  75. Yosida K.: Functional Analysis. Springer, Berlin (1969)

    MATH  Google Scholar 

  76. Yudovich V.I.: A two dimensional non-stationary problem on the flow of an ideal compressible fluid through a given region. Mat. Sb. 4(64), 562–588 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Escobedo.

Additional information

Communicated by C. Le Bris

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Baba, H., Amrouche, C. & Escobedo, M. Semi-Group Theory for the Stokes Operator with Navier-Type Boundary Conditions on L p-Spaces. Arch Rational Mech Anal 223, 881–940 (2017). https://doi.org/10.1007/s00205-016-1048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1048-1

Navigation