Skip to main content
Log in

Strichartz Estimates and Moment Bounds for the Relativistic Vlasov–Maxwell System

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the relativistic Vlasov–Maxwell system with data of unrestricted size and without compact support in momentum space. In the two-dimensional and the two-and-a-half-dimensional cases, Glassey–Schaeffer proved (Commun Math Phys 185:257–284, 1997; Arch Ration Mech Anal 141:331–354, 1998; Arch Ration Mech Anal. 141:355–374, 1998) that for regular initial data with compact momentum support this system has unique global in time classical solutions. In this work we do not assume compact momentum support for the initial data and instead require only that the data have polynomial decay in momentum space. In the two-dimensional and the two-and-a-half-dimensional cases, we prove the global existence, uniqueness and regularity for solutions arising from this class of initial data. To this end we use Strichartz estimates and prove that suitable moments of the solution remain bounded. Moreover, we obtain a slight improvement of the temporal growth of the \({L^\infty_x}\) norms of the electromagnetic fields compared to Glassey and Schaeffer (Commun Math Phys 185:257–284, 1997; Arch Ration Mech Anal 141:355–374, 1998). In the three-dimensional case, we apply Strichartz estimates and moment bounds to show that a regular solution can be extended as long as \({{\|p_0^{\theta} f \|_{L^{q}_{x}L^1_{p}}}}\) remains bounded for \({\theta > \frac{2}{q}}\), \({2 < q \leqq \infty}\). This improves previous results of Pallard (Indiana Univ Math J 54(5):1395–1409, 2005; Commun Math Sci 13(2):347–354, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asano K.: On local solutions of the initial value problem for the Vlasov–Maxwell equation. Commun. Math. Phys. 106(4), 551–568 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Bouchut F., Golse F., Pallard C.: Classical solutions and the Glassey–Strauss theorem for the 3D Vlasov–Maxwell system. Arch. Ration. Mech. Anal. 170, 1–15 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Foschi D.: Inhomogeneous Strichartz estimates. J. Hyperb. Differ. Eqn. 2(1), 1–24 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Glassey R., Schaeffer J.: Global existence for the relativistic Vlasov–Maxwell system with nearly neutral initial data. Commun. Math. Phys. 119, 353–384 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Glassey R., Schaeffer J.: The two and one half dimensional relativistic Vlasov Maxwell system. Commun. Math. Phys. 185, 257–284 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Glassey R., Schaeffer J.: The relativistic Vlasov–Maxwell system in two space dimensions: Part I. Arch. Ration. Mech. Anal. 141, 331–354 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Glassey R., Schaeffer J.: The relativistic Vlasov–Maxwell system in two space dimensions: Part II. Arch. Ration. Mech. Anal. 141, 355–374 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Glassey R., Strauss W.: Singularity formation in a collisionless plasma could only occur at large velocities. Arch. Rat. Mech. Anal. 92, 59–90 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Glassey R., Strauss W.: Absence of shocks in an initially dilute collisionless plasma. Commun. Math. Phys. 113, 191–208 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Glassey R., Strauss W.: High velocity particles in a collisionless plasma. Math. Methods Appl. Sci. 9, 46–52 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Glassey, R., Strauss, W.: Large velocities in the relativistic Vlasov–Maxwell equations. J. Fac. Sci. Univ. Tokyo 36 Sec. IA Math., 615–527 (1989)

  12. Kapitanski L.V.: Some generalizations of the Strichartz–Brenner inequality. Leningr. Math. J. 1(3), 693–726 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Keel M., Tao T.: Endpoint Strichartz estimates. Am. J. Math 120, 955–980 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Klainerman S., Staffilani G.: A new approach to study the Vlasov–Maxwell system. Commun. Pure Appl. Anal. 1, 103–125 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Luk J., Strain R.: A new continuation criterion for the Vlasov–Maxwell system. Commun. Math. Phys. 331, 1005–1027 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Lions P.-L., Perthame B.: Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system. Invent. Math. 105, 415–430 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Pallard C.: On the boundedness of the momentum support of solutions to the relativistic Vlasov–Maxwell system. Indiana Univ. Math. J. 54(5), 1395–1409 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pallard C.: A refined existence criterion for the relativistic Vlasov Maxwell system. Commun. Math. Sci. 13(2), 347–354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pfaffermoser K.: Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data. J. Differ. Equ. 95, 281–303 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  20. Rein G.: Generic global solutions of the relativistic Vlasov–Maxwell system of plasma physics. Commun. Math. Phys. 135, 41–78 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Schaeffer, J.: Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions. Commun. PDE 16(8&9), 1313–1335 (1991)

  22. Schaeffer J.: A small data theorem for collisionless plasma that includes high velocity particles. Indiana Univ. Math. J. 53(1), 1–34 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sospedra-Alfonso R., Illner R.: Classical solvability of the relativistic Vlasov–Maxwell system with bounded spatial density. Math. Methods Appl. Sci. 33(6), 751–757 (2010)

    MATH  MathSciNet  Google Scholar 

  24. Strichartz R.S.: Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations. Duke Math J. 44, 705–774 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Taggart R.J.: Inhomogeneous Strichartz estimates. Forum Math. 22, 825–853 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Strain.

Additional information

Communicated by L. Saint-Raymond

J.L. was partially supported by the NSF Postdoctoral Fellowship DMS-1204493. J.L. thanks the hospitality of the University of Pennsylvania where part of this work was carried out. R.M.S. was partially supported by the NSF Grant DMS-1200747.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luk, J., Strain, R.M. Strichartz Estimates and Moment Bounds for the Relativistic Vlasov–Maxwell System. Arch Rational Mech Anal 219, 445–552 (2016). https://doi.org/10.1007/s00205-015-0899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0899-1

Keywords

Navigation