Skip to main content
Log in

Well-Posedness for a Class of Thin-Film Equations with General Mobility in the Regime of Partial Wetting

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We establish well-posedness for the family of thin-film equations

$$\left \{\begin{array}{ll}h_t + (h^n h_{xxx})_x \ = \ 0 \quad \ {\rm in } \ \{ h > 0 \},\\ h \ = \ 0, \ |h_x| \ = \ 1 \quad\quad {\rm on } \ \partial \{ h > 0 \}\end{array}\right. $$
(1)

with \({n \in (0,\frac {14}{5}) \backslash \{ 1, 2 \}}\). The model (1) with \({n \in (0,3]}\) has been used to describe the evolution of a capillary driven thin liquid droplet on a solid substrate in terms of its height profile \({h \geqq 0}\). The family of thin-film equations (1) provides a model problem to investigate contact line propagation in fluid dynamics under relaxed slip conditions. The parabolicity of the fourth order parabolic problem degenerates at the free boundary, which leads to a loss of regularity at the moving contact point. Our solutions are regular in terms of the two variables d(x) and d(x)3−n, where d(x) is the distance to the free boundary. The main technical difficulty in the analysis of (1) is related to the loss of regularity at the contact points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. National Bureau of Standards, United Statement Department of Commerce (1972)

  2. Angenent S.: Analyticity of the interface of the porous media equation after the waiting time. Proc. Am. Math. Soc. 102(2), 329–336 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angenent S.: Local existence and regularity for a class of degenerate parabolic equations. Math. Ann. 280(3), 465–482 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Angenent, S.: Solutions of the one-dimensional porous medium equation are determined by their free boundary. J. Lond. Math. Soc. (2) 42(2), 339–353 (1990)

  5. Barrett, J., Blowey, J., Garcke, H.: Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80(4), 525–556 (1998)

  6. Beretta, E., Bertsch, M., Dal Passo, R.: Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation. Arch. Ration. Mech. Anal. 129(2), 175–200 (1995)

  7. Bernis, F.: Finite speed of propagation and continuity of the interface for thin viscous flows. Adv. Differ. Equ. 1(3), 337–368 (1996)

  8. Bernis, F.: Finite speed of propagation for thin viscous flows when \({2\leqq n < 3}\). C. R. Acad. Sci. Paris Sér. I Math. 322(12), 1169–1174 (1996)

  9. Bernis, F., Friedman, A.: Higher order nonlinear degenerate parabolic equations. J. Differ. Equ. 83(1), 179–206 (1990)

  10. Bertozzi, A.: The mathematics of moving contact lines in thin liquid films. Notices Am. Math. Soc. 45(6), 689–697 (1998)

  11. Bertozzi, A., Pugh, M.: The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions. Commun. Pure Appl. Math. 49(2), 85–123 (1996)

  12. Bertsch, M., Dal Passo, R., Garcke, H., Grün, G.: The thin viscous flow equation in higher space dimensions. Adv. Differ. Equ. 3(3), 417–440 (1998)

  13. Bertsch, M., Giacomelli, L., Karali, G.: Thin-film equations with “partial wetting” energy: existence of weak solutions. Phys. D 209(1–4), 17–27 (2005)

  14. Blake T.: The physics of moving wetting lines. J. Coll. Interf. Sc. 299(1), 1–13 (2006)

    Article  Google Scholar 

  15. Caffarelli, L., Friedman, A.: Regularity of the free boundary for the one-dimensional flow of gas in a porous medium. Am. J. Math. 101(6), 1193–1218 (1979)

  16. Dal Passo, R., Garcke, H., Grün, G.: On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions. SIAM J. Math. Anal. 29(2), 321–342 (electronic) (1998)

  17. Dal Passo, R., Giacomelli, L., Grün, G.: A waiting time phenomenon for thin film equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30(2), 437–463 (2001)

  18. Daskalopoulos, P., Hamilton, R.: Regularity of the free boundary for the porous medium equation. J. Am. Math. Soc. 11(4), 899–965 (1998)

  19. Eggers J.: Drop formation—an overview. ZAMM Z. Angew. Math. Mech. 85(6), 400–410 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gennes, P.D., Brochard-Wyart, F., Quere, D.: Capillarity and Wetting Phenomena. Springer, Berlin, 2004

  21. Giacomelli, L., Gnann, M.V., Knüpfer, H., Otto, F.: Well-posedness for the Navier-slip thin-film equation in the case of complete wetting. J. Differ. Equ. 257(1), 15–81 (2014). doi:10.1016/j.jde.2014.03.010

  22. Giacomelli, L., Gnann, M.V., Otto, F.: Regularity of source-type solutions to the thin-film equation with zero contact angle and mobility exponent between 3/2 and 3. Eur. J. Appl. Math. 24(5), 735–760 (2013). doi:10.1017/S0956792513000156

  23. Giacomelli, L., Knüpfer, H.: A free boundary problem of fourth order: classical solutions in weighted Hölder spaces. Commun. Partial Differ. Equ. 35(11), 2059–2091 (2010). doi:10.1080/03605302.2010.494262

  24. Giacomelli, L., Knüpfer, H., Otto, F.: Smooth zero-contact-angle solutions to a thin-film equation around the steady state. J. Differ. Equ. 245(6), 1454–1506 (2008)

  25. Giacomelli, L., Shishkov, A.: Propagation of support in one-dimensional convected thin-film flow. Indiana Univ. Math. J. 54(4), 1181–1215 (2005)

  26. Greenspan H.: Motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84, 125–143 (1978)

    Article  ADS  MATH  Google Scholar 

  27. Grün, G.: Droplet spreading under weak slippage: a basic result on finite speed of propagation. SIAM J. Math. Anal. 34(4), 992–1006 (electronic) (2003). doi:10.1137/S0036141002403298

  28. Grün, G.: Droplet spreading under weak slippage—existence for the Cauchy problem. Commun. Partial Differ. Equ. 29(11–12), 1697–1744 (2004)

  29. Huh, C., Scriven, L.: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Coll. Int. Sc. 35(1), 85–101 (1971)

  30. Hulshof, J., Shishkov, A.E.: The thin film equation with \({2\leqq n < 3}\): finite speed of propagation in terms of the L 1-norm. Adv. Differ. Equ. 3(5), 625–642 (1998)

  31. Knüpfer, H.: Navier slip thin-film equation for partial wetting. Commun. Pure Appl. Math. 64(9), 1263–1296 (2011)

  32. Knüpfer, H., Masmoudi, N.: Darcy’s flow with prescribed contact angle: well-posedness and lubrication approximation. Arch. Rational Mech. Anal. (2015). doi:10.1007/s00205-015-0868-8

  33. Knüpfer, H., Masmoudi, N.: Well-posedness and uniform bounds for a nonlocal third order evolution operator on an infinite wedge. Commun. Math. Phys. 320(2), 395–424 (2013). doi:10.1007/s00220-013-1708-z

  34. Koch, H.: Non-euclidean singular integrals and the porous medium equation. Habilitation Thesis, Dortmund (1999)

  35. Kozlov, V., Mazya, V., Rossmann, J.: Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs, vol. 52. Am. Math. Soc., Providence, 1997

  36. Oron A., Davis S., Bankoff S.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931–980 (1997)

    Article  ADS  Google Scholar 

  37. Otto, F.: Lubrication approximation with prescribed nonzero contact angle. Commun. Partial Differ. Equ. 23(11–12), 2077–2164 (1998)

  38. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I, 2nd edn. Academic Press Inc., New York, 1980. Functional analysis

  39. Ren, W., Hu, D., Weinan, E.: Continuum models for the contact line problem. Phys. Fluids 22(10) (2010)

  40. Reynolds, O.: On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil. Proc. R. Soc. Lond. 40, 191–203 (1886)

  41. Thompson P., Troian S.: A general boundary condition for liquid flow at solid surfaces. Nature 389(6649), 360–362 (1997)

    Article  ADS  Google Scholar 

  42. Wayner, P.: Spreading of a liquid film with a finite contact angle by the evaporation condensation process. Langmuir 9(1), 294–299 (1993). doi:10.1021/la00025a056

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Knüpfer.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knüpfer, H. Well-Posedness for a Class of Thin-Film Equations with General Mobility in the Regime of Partial Wetting. Arch Rational Mech Anal 218, 1083–1130 (2015). https://doi.org/10.1007/s00205-015-0882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0882-x

Keywords

Navigation