Skip to main content
Log in

A Degenerate Fourth-Order Parabolic Equation Modeling Bose–Einstein Condensation. Part I: Local Existence of Solutions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A degenerate fourth-order parabolic equation modeling condensation phenomena related to Bose–Einstein particles is analyzed. The model is a Fokker–Planck-type approximation of the Boltzmann–Nordheim equation, only keeping the leading order term. It maintains some of the main features of the kinetic model, namely mass and energy conservation and condensation at zero energy. The existence of a local-in-time nonnegative continuous weak solution is proven. If the solution is not global, it blows up with respect to the L norm in finite time. The proof is based on approximation arguments, interpolation inequalities in weighted Sobolev spaces, and suitable a priori estimates for a weighted gradient L 2 norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Allemand T., Toscani G.: The grazing collision limit of Kac caricature of Bose-Einstein particles. Asympt. Anal. 72, 201–229 (2011)

    MATH  MathSciNet  Google Scholar 

  2. Becker, J. Grün, G.: The thin-film equation: recent advances and some new perspectives. J. Phys. Condens. Matter 17, 291-307 (2005)

  3. Beretta, E., Bertsch, M., Dal Passo, R.: Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation. Arch. Ration. Mech. Anal. 129, 175-200 (1995)

  4. Bernis F.: Finite speed of propagation and continuity of the interface for thin viscous flows. Adv. Differ. Equ. 1, 337–368 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Bernis, F., Friedman, A.: Higher order nonlinear degenerate parabolic equations. J. Differ. Equ. 83, 179-206 (1990)

  6. Bertozzi, A.: The mathematics of moving contact lines in thin liquid films. Notices Am. Math. Soc. 45, 689-697 (1998)

  7. Bertozzi, A., Pugh, M.: The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions. Commun. Pure Appl. Math. 49, 85-123 (1996)

  8. Bukal, M., Jüngel, A., Matthes, D.: A multidimensional nonlinear sixth-order quantum diffusion equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 30, 337-365 (2013)

  9. Carrillo, J.A., Di Francesco, M., Toscani, G.: Condensation phenomena in nonlinear drift equations. Preprint, 2013. arXiv:1307.2275

  10. Dal Passo, R., Garcke, H., Grün, G.: On a fourth order degenerate parabolic equation: global entropy estimates and qualitative behavior of solutions. SIAM J. Math. Anal. 29, 321-342 (1998)

  11. Escobedo, M., Herrero, M., Velázquez, J.: A nonlinear Fokker-Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma. Trans. Am. Math. Soc. 350, 3837-3901 (1998)

  12. Escobedo, M., Velázquez, J.: Finite time blow-up for the bosonic Nordheim equation. Preprint, 2012. arXiv:1206.5410

  13. Evans, J., Galaktionov, V., King, J.: Unstable sixth-order thin film equation: I. Blow-up similarity solutions. Nonlinearity 20, 1799-1841

  14. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, 1964

  15. Gianazza, U., Savaré, G., Toscani, G.: The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation. Arch. Ration. Mech. Anal. 194, 133-220 (2009)

  16. Gilding, B.: Hölder continuity of solutions of parabolic equations. J. Lond. Math. Soc. 13, 103-106 (1976)

  17. Josserand, C., Pomeau, Y., Rica, S.: Self-similar singularities in the kinetics of condensation. J. Low Temp. Phys. 145, 231-265 (2006)

  18. Jüngel, A., Matthes, D.: The Derrida–Lebowitz–Speer–Spohn equation: existence, non-uniqueness, and decay rates of the solutions. SIAM J. Math. Anal. 39, 1996-2015 (2008)

  19. Jüngel, A., Winkler, M.: A degenerate fourth-order parabolic equation modeling Bose–Einstein condensation. Part II: Finite-time blow-up. Preprint, 2013

  20. Kaniadakis, G., Quarati, P.: Kinetic equation for classical particles obeying an exclusion principle. Phys. Rev. E 48, 4263-4270 (1993)

  21. Kaniadakis, G., Quarati, P.: Classical model of bosons and fermions. Phys. Rev. E 49, 5103-5110 (1994)

  22. Kompaneets, A.: The establishment of thermal equilibrium between quanta and electrons. Soviet Phys. JETP 4, 730-737 (1957)

  23. Nordheim, L.: On the kinetic method in the new statistics and its application in the electron theory of conductivity. Proc. R. Soc. Lond. A 119, 689-698 (1928)

  24. Pawlow, I., Zajaczkowski, W.: On a class of sixth order viscous Cahn-Hilliard type equations. Discrete Contin. Dyn. Syst. S 6, 517-546 (2013)

  25. Spohn H.: Kinetics of the Bose–Einstein condensation. Physica D 239, 627–634 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Toscani, G.: Finite time blow up in Kaniadakis–Quarati model of Bose–Einstein particles. Commun. Part. Differ. Equ. 37, 77-87 (2012)

  27. Winkler, M.: Global solutions in higher dimensions to a fourth-order parabolic equation modeling epitaxial thin-film growth. Z. Angew. Math. Phys. 62, 575-608 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Jüngel.

Additional information

Communicated by F. Otto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jüngel, A., Winkler, M. A Degenerate Fourth-Order Parabolic Equation Modeling Bose–Einstein Condensation. Part I: Local Existence of Solutions. Arch Rational Mech Anal 217, 935–973 (2015). https://doi.org/10.1007/s00205-015-0847-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0847-0

Keywords

Navigation