Skip to main content

Advertisement

Log in

Development of a neural rosette formation assay (RoFA) to identify neurodevelopmental toxicants and to characterize their transcriptome disturbances

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The first in vitro tests for developmental toxicity made use of rodent cells. Newer teratology tests, e.g. developed during the ESNATS project, use human cells and measure mechanistic endpoints (such as transcriptome changes). However, the toxicological implications of mechanistic parameters are hard to judge, without functional/morphological endpoints. To address this issue, we developed a new version of the human stem cell-based test STOP-tox(UKN). For this purpose, the capacity of the cells to self-organize to neural rosettes was assessed as functional endpoint: pluripotent stem cells were allowed to differentiate into neuroepithelial cells for 6 days in the presence or absence of toxicants. Then, both transcriptome changes were measured (standard STOP-tox(UKN)) and cells were allowed to form rosettes. After optimization of staining methods, an imaging algorithm for rosette quantification was implemented and used for an automated rosette formation assay (RoFA). Neural tube toxicants (like valproic acid), which are known to disturb human development at stages when rosette-forming cells are present, were used as positive controls. Established toxicants led to distinctly different tissue organization and differentiation stages. RoFA outcome and transcript changes largely correlated concerning (1) the concentration-dependence, (2) the time dependence, and (3) the set of positive hits identified amongst 24 potential toxicants. Using such comparative data, a prediction model for the RoFA was developed. The comparative analysis was also used to identify gene dysregulations that are particularly predictive for disturbed rosette formation. This ‘RoFA predictor gene set’ may be used for a simplified and less costly setup of the STOP-tox(UKN) assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AOP:

Adverse outcome pathway

BMC25:

Benchmark concentration leading to 25% decrease compared to control

BPA:

Bisphenol A

BR:

Borderline range

CNS:

Central nervous system

CsA:

Cyclosporin A

DMSO:

Dimethylsulfoxide

DNT:

Developmental neurotoxicity

FGF:

Fibroblast growth factor

HDACi:

Histone deacetylase inhibitor

IFNbeta:

Interferon beta

KE:

Key events

KNDP:

Key neurodevelopmental processes

mEST:

Mouse embryonic stem cell test

NAM:

New approach methods

NCAM:

Neural cell adhesion molecule

NDD:

Neurodevelopmental distance

NEP:

Neuroepithelial precursor

OECD:

Organization for economic co-operation and development

PCMB:

P-chloromercuribenzoic acid

PMA:

Phorbol 12-myristate 13-acetate

PSC:

Pluripotent stem cells

RA:

Retinoic acid

REACH:

Registration, evaluation, authorisation and restriction of chemicals (EC 1907/2006)

RoFA:

Rosette formation assay

SD:

Standard deviation

STOP-tox(UKN) :

Stem cell-based teratogenic omics prediction-UKN toxicity assay (Shinde et al. 2016a), previously named:

UKN1:

University of Konstanz (1) assay (Krug et al. 2013b)

T:

Threshold

TSA:

Trichostatin A

U(T):

Uncertainty of threshold

VPA:

Valproic acid

Wnta:

Wnt activators

References

  • Aschner M, Ceccatelli S, Daneshian M, Fritsche E, Hasiwa N, Hartung T, Hogberg HT, Leist M, Li A, Mundi WR et al (2017) Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. Altex 34:49–74

    PubMed  Google Scholar 

  • Baker N, Boobis A, Burgoon L, Carney E, Currie R, Fritsche E, Knudsen T, Laffont M, Piersma AH, Poole A et al (2018) Building a developmental toxicity ontology. Birth Defects Res 110:502–518

    CAS  PubMed  Google Scholar 

  • Bal-Price A, Fritsche E (2018) Editorial: developmental neurotoxicity. Toxicol Appl Pharmacol 354:1–2

    CAS  PubMed  Google Scholar 

  • Bal-Price A, Crofton KM, Leist M, Allen S, Arand M, Buetler T, Delrue N, FitzGerald RE, Hartung T, Heinonen T et al (2015) International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch Toxicol 89:269–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH et al (2018a) Recommendation on test readiness criteria for new approach methods in toxicology: exemplified for developmental neurotoxicity. Altex 35:306–352

    PubMed  PubMed Central  Google Scholar 

  • Bal-Price A, Pistollato F, Sachana M, Bopp SK, Munn S, Worth A (2018b) Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods. Toxicol Appl Pharmacol 354:7–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balmer NV, Weng MK, Zimmer B, Ivanova VN, Chambers SM, Nikolaeva E, Jagtap S, Sachinidis A, Hescheler J, Waldmann T et al (2012) Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet 21:4104–4114

    CAS  PubMed  Google Scholar 

  • Balmer NV, Klima S, Rempel E, Ivanova VN, Kolde R, Weng MK, Meganathan K, Henry M, Sachinidis A, Berthold MR et al (2014) From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol 88:1451–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barenys M, Gassmann K, Baksmeier C, Heinz S, Reverte I, Schmuck M, Temme T, Bendt F, Zschauer TC, Rockel TD et al (2017) Epigallocatechin gallate (EGCG) inhibits adhesion and migration of neural progenitor cells in vitro. Arch Toxicol 91:827–837

    CAS  PubMed  Google Scholar 

  • Baumann J, Barenys M, Gassmann K, Fritsche E (2014) Comparative human and rat "neurosphere assay" for developmental neurotoxicity testing. Curr Protoc Toxicol 59:11–24

    Google Scholar 

  • Baumann J, Gassmann K, Masjosthusmann S, DeBoer D, Bendt F, Giersiefer S, Fritsche E (2016) Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events. Arch Toxicol 90:1415–1427

    CAS  PubMed  Google Scholar 

  • Beccari L, Moris N, Girgin M, Turner DA, Baillie-Johnson P, Cossy AC, Lutolf MP, Duboule D, Arias AM (2018) Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 562:272–276

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300

    Google Scholar 

  • Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B (2007) KNIME: The konstanz information miner. In: Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R (eds) Data analysis, machine learning and applications. Springer, Berlin, pp 319–326

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Google Scholar 

  • Campbell CT, Sampathkumar SG, Yarema KJ (2007) Metabolic oligosaccharide engineering: perspectives, applications, and future directions. Mol Biosyst 3:187–194

    CAS  PubMed  Google Scholar 

  • Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers SM, Mica Y, Studer L, Tomishima MJ (2011) Converting human pluripotent stem cells to neural tissue and neurons to model neurodegeneration. Methods Mol Biol 793:87–97

    CAS  PubMed  Google Scholar 

  • Colleoni S, Galli C, Gaspar JA, Meganathan K, Jagtap S, Hescheler J, Sachinidis A, Lazzari G (2011) Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci 124:370–377

    CAS  PubMed  Google Scholar 

  • Conti L, Cattaneo E (2010) Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci 11:176–187

    CAS  PubMed  Google Scholar 

  • Corvi R, Vilardell M, Aubrecht J, Piersma A (2016) Validation of transcriptomics-based in vitro methods. Adv Exp Med Biol 856:243–257

    CAS  PubMed  Google Scholar 

  • Delp J, Gutbier S, Klima S, Hoelting L, Pinto-Gil K, Hsieh JH, Aichem M, Klein K, Schreiber F, Tice RR et al (2018) A high-throughput approach to identify specific neurotoxicants/developmental toxicants in human neuronal cell function assays. Altex 35:235–253

    PubMed  Google Scholar 

  • Dhara SK, Stice SL (2008) Neural differentiation of human embryonic stem cells. J Cell Biochem 105:633–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhara SK, Hasneen K, Machacek DW, Boyd NL, Rao RR, Stice SL (2008) Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures. Differentiation 76:454–464

    CAS  PubMed  Google Scholar 

  • Dreser N, Zimmer B, Dietz C, Sugis E, Pallocca G, Nyffeler J, Meisig J, Bluthgen N, Berthold MR, Waldmann T et al (2015) Grouping of histone deacetylase inhibitors and other toxicants disturbing neural crest migration by transcriptional profiling. Neurotoxicology 50:56–70

    CAS  PubMed  Google Scholar 

  • Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95

    CAS  PubMed  Google Scholar 

  • Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147:29–36

    CAS  PubMed  Google Scholar 

  • Frank CL, Brown JP, Wallace K, Mundy WR, Shafer TJ (2017) From the cover: developmental neurotoxicants disrupt activity in cortical networks on microelectrode arrays: results of screening 86 compounds during neural network formation. Toxicol Sci 160:121–135

    CAS  PubMed  Google Scholar 

  • Frank CL, Brown JP, Wallace K, Wambaugh JF, Shah I, Shafer TJ (2018) Defining toxicological tipping points in neuronal network development. Toxicol Appl Pharmacol 354:81–93

    CAS  PubMed  Google Scholar 

  • Fritsche E, Crofton KM, Hernandez AF, Hougaard Bennekou S, Leist M, Bal-Price A, Reaves E, Wilks MF, Terron A, Solecki R et al (2017) OECD/EFSA workshop on developmental neurotoxicity (DNT): The use of non-animal test methods for regulatory purposes. Altex 34:311–315

    PubMed  Google Scholar 

  • Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J (2018a) Development of the concept for stem cell-based developmental neurotoxicity evaluation. Toxicol Sci 165:14–20

    CAS  PubMed  Google Scholar 

  • Fritsche E, Grandjean P, Crofton KM, Aschner M, Goldberg A, Heinonen T, Hessel EVS, Hogberg HT, Bennekou SH, Lein PJ et al (2018b) Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicol Appl Pharmacol 354:3–6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178

    CAS  PubMed  Google Scholar 

  • Grandjean P, Landrigan PJ (2014) Neurodevelopmental toxicity: still more questions than answers–authors' response. Lancet Neurol 13:648–649

    PubMed  Google Scholar 

  • Grinberg M, Stober RM, Edlund K, Rempel E, Godoy P, Reif R, Widera A, Madjar K, Schmidt-Heck W, Marchan R et al (2014) Toxicogenomics directory of chemically exposed human hepatocytes. Arch Toxicol 88:2261–2287

    CAS  PubMed  Google Scholar 

  • Harbron C, Chang KM, South MC (2007) RefPlus: an R package extending the RMA algorithm. Bioinformatics 23:2493–2494

    CAS  PubMed  Google Scholar 

  • Harrill JA, Freudenrich T, Wallace K, Ball K, Shafer TJ, Mundy WR (2018) Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment. Toxicol Appl Pharmacol 354:24–39

    CAS  PubMed  Google Scholar 

  • Hartung T, Hoffmann S, Stephens M (2013) Mechanistic validation. Altex 30:119–130

    PubMed  PubMed Central  Google Scholar 

  • Hermsen SA, Pronk TE, van den Brandhof EJ, van der Ven LT, Piersma AH (2013) Transcriptomic analysis in the developing zebrafish embryo after compound exposure: individual gene expression and pathway regulation. Toxicol Appl Pharmacol 272:161–171

    CAS  PubMed  Google Scholar 

  • Hoelting L, Klima S, Karreman C, Grinberg M, Meisig J, Henry M, Rotshteyn T, Rahnenfuhrer J, Bluthgen N, Sachinidis A et al (2016) Stem cell-derived immature human dorsal root ganglia neurons to identify peripheral neurotoxicants. Stem Cells Transl Med 5:476–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt PR, Olejnik N, Bailey KD, Vaught CA, Sprando RL (2018) C. elegans development and activity test detects mammalian developmental neurotoxins. Food Chem Toxicol 121:583–592

    CAS  PubMed  Google Scholar 

  • Jagtap S, Meganathan K, Gaspar J, Wagh V, Winkler J, Hescheler J, Sachinidis A (2011) Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol 162:1743–1756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson H, Lindstedt M, Albrekt AS, Borrebaeck CA (2011) A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests. BMC Genom 12:399

    CAS  Google Scholar 

  • Johansson H, Albrekt AS, Borrebaeck CA, Lindstedt M (2013) The GARD assay for assessment of chemical skin sensitizers. Toxicol In Vitro 27:1163–1169

    CAS  PubMed  Google Scholar 

  • Krebs A, Nyffeler J, Rahnenfuhrer J, Leist M (2018) Normalization of data for viability and relative cell function curves. Altex 35:268–271

    PubMed  Google Scholar 

  • Krug AK, Balmer NV, Matt F, Schonenberger F, Merhof D, Leist M (2013a) Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Arch Toxicol 87:2215–2231

    CAS  PubMed  Google Scholar 

  • Krug AK, Kolde R, Gaspar JA, Rempel E, Balmer NV, Meganathan K, Vojnits K, Baquie M, Waldmann T, Ensenat-Waser R et al (2013b) Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol 87:123–143

    CAS  PubMed  Google Scholar 

  • Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, Otani T, Livesey FJ, Knoblich JA (2017) Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol 35:659–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legler J, van den Brink CE, Brouwer A, Murk AJ, van der Saag PT, Vethaak AD, van der Burg B (1999) Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. Toxicol Sci 48:55–66

    CAS  PubMed  Google Scholar 

  • Leist M, Ayrton AD, Ioannides C (1992) A cytosolic oxygenase activity involved in the bioactivation of 2-aminofluorene. Toxicology 71:7–20

    CAS  PubMed  Google Scholar 

  • Leist M, Hasiwa N, Daneshian M, Hartung T (2012a) Validation and quality control of replacement alternatives—current status and future challenges. Toxicol Res 1:8–22

    CAS  Google Scholar 

  • Leist M, Lidbury BA, Yang C, Hayden PJ, Kelm JM, Ringeissen S, Detroyer A, Meunier JR, Rathman JF, Jackson GR Jr et al (2012b) Novel technologies and an overall strategy to allow hazard assessment and risk prediction of chemicals, cosmetics, and drugs with animal-free methods. Altex 29:373–388

    PubMed  Google Scholar 

  • Leist M, Hasiwa N, Rovida C, Daneshian M, Basketter D, Kimber I, Clewell H, Gocht T, Goldberg A, Busquet F et al (2014) Consensus report on the future of animal-free systemic toxicity testing. Altex 31:341–356

    PubMed  Google Scholar 

  • Leist M, Ghallab A, Graepel R, Marchan R, Hassan R, Bennekou SH, Limonciel A, Vinken M, Schildknecht S, Waldmann T et al (2017) Adverse outcome pathways: opportunities, limitations and open questions. Arch Toxicol 91:3477–3505

    CAS  PubMed  Google Scholar 

  • Leontaridou M, Urbisch D, Kolle SN, Ott K, Mulliner DS, Gabbert S, Landsiedel R (2017) The borderline range of toxicological methods: quantification and implications for evaluating precision. Altex 34:525–538

    PubMed  Google Scholar 

  • Leontaridou M, Gabbert S, Landsiedel R (2019) The impact of precision uncertainty on predictive accuracy metrics of non-animal testing methods. Altex 36:435–446

    PubMed  Google Scholar 

  • Li H, Bai J, Zhong G, Lin H, He C, Dai R, Du H, Huang L (2019) Improved defined approaches for predicting skin sensitization hazard and potency in humans. Altex 36:363–372

    PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • London L, Beseler C, Bouchard MF, Bellinger DC, Colosio C, Grandjean P, Harari R, Kootbodien T, Kromhout H, Little F et al (2012) Neurobehavioral and neurodevelopmental effects of pesticide exposures. Neurotoxicology 33:887–896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mundy WR, Robinette B, Radio NM, Freudenrich TM (2008) Protein biomarkers associated with growth and synaptogenesis in a cell culture model of neuronal development. Toxicology 249:220–229

    CAS  PubMed  Google Scholar 

  • Murko C, Lagger S, Steiner M, Seiser C, Schoefer C, Pusch O (2013) Histone deacetylase inhibitor Trichostatin A induces neural tube defects and promotes neural crest specification in the chicken neural tube. Differentiation 85:55–66

    CAS  PubMed  Google Scholar 

  • New DA (1978) Whole-embryo culture and the study of mammalian embryos during organogenesis. Biol Rev Camb Philos Soc 53:81–122

    CAS  PubMed  Google Scholar 

  • Nyffeler J, Dolde X, Krebs A, Pinto-Gil K, Pastor M, Behl M, Waldmann T, Leist M (2017a) Combination of multiple neural crest migration assays to identify environmental toxicants from a proof-of-concept chemical library. Arch Toxicol 91:3613–3632

    CAS  PubMed  Google Scholar 

  • Nyffeler J, Karreman C, Leisner H, Kim YJ, Lee G, Waldmann T, Leist M (2017b) Design of a high-throughput human neural crest cell migration assay to indicate potential developmental toxicants. Altex 34:75–94

    PubMed  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Google Scholar 

  • Pallocca G, Grinberg M, Henry M, Frickey T, Hengstler JG, Waldmann T, Sachinidis A, Rahnenfuhrer J, Leist M (2016) Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol 90:159–180

    CAS  PubMed  Google Scholar 

  • Piersma AH, Genschow E, Verhoef A, Spanjersberg MQ, Brown NA, Brady M, Burns A, Clemann N, Seiler A, Spielmann H (2004) Validation of the postimplantation rat whole-embryo culture test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 32:275–307

    CAS  PubMed  Google Scholar 

  • Piersma AH, Bosgra S, van Duursen MB, Hermsen SA, Jonker LR, Kroese ED, van der Linden SC, Man H, Roelofs MJ, Schulpen SH et al (2013) Evaluation of an alternative in vitro test battery for detecting reproductive toxicants. Reprod Toxicol 38:53–64

    CAS  PubMed  Google Scholar 

  • Radio NM, Breier JM, Shafer TJ, Mundy WR (2008) Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening. Toxicol Sci 105:106–118

    CAS  PubMed  Google Scholar 

  • Rempel E, Hoelting L, Waldmann T, Balmer NV, Schildknecht S, Grinberg M, Das Gaspar JA, Shinde V, Stober R, Marchan R et al (2015) A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol 89:1599–1618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt BZ, Lehmann M, Gutbier S, Nembo E, Noel S, Smirnova L, Forsby A, Hescheler J, Avci HX, Hartung T et al (2017) In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 91:1–33

    CAS  PubMed  Google Scholar 

  • Scholz S, Fischer S, Gundel U, Kuster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment–applications beyond acute toxicity testing. Environ Sci Pollut Res Int 15:394–404

    CAS  PubMed  Google Scholar 

  • Seiler AE, Spielmann H (2011) The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat Protoc 6:961–978

    CAS  PubMed  Google Scholar 

  • Shinde V, Klima S, Sureshkumar PS, Meganathan K, Jagtap S, Rempel E, Rahnenfuhrer J, Hengstler JG, Waldmann T, Hescheler J et al (2015) Human pluripotent stem cell based developmental toxicity assays for chemical safety screening and systems biology data generation. J Vis Exp 100:e52333

    Google Scholar 

  • Shinde V, Hoelting L, Srinivasan SP, Meisig J, Meganathan K, Jagtap S, Grinberg M, Liebing J, Bluethgen N, Rahnenfuhrer J et al (2016a) Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Tox and STOP-Tox tests. Arch Toxicol 91:839–864

    PubMed  PubMed Central  Google Scholar 

  • Shinde V, Perumal Srinivasan S, Henry M, Rotshteyn T, Hescheler J, Rahnenfuhrer J, Grinberg M, Meisig J, Bluthgen N, Waldmann T et al (2016b) Comparison of a teratogenic transcriptome-based predictive test based on human embryonic versus inducible pluripotent stem cells. Stem Cell Res Ther 7:190

    PubMed  PubMed Central  Google Scholar 

  • Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48:6974–6998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova L, Hogberg HT, Leist M, Hartung T (2014) Developmental neurotoxicity—challenges in the 21st century and in vitro opportunities. Altex 31:129–156

    PubMed  PubMed Central  Google Scholar 

  • Spate AK, Busskamp H, Niederwieser A, Schart VF, Marx A, Wittmann V (2014) Rapid labeling of metabolically engineered cell-surface glycoconjugates with a carbamate-linked cyclopropene reporter. Bioconjug Chem 25:147–154

    PubMed  Google Scholar 

  • Stiegler NV, Krug AK, Matt F, Leist M (2011) Assessment of chemical-induced impairment of human neurite outgrowth by multiparametric live cell imaging in high-density cultures. Toxicol Sci 121:73–87

    CAS  PubMed  Google Scholar 

  • Terron A, Bennekou SH (2018) Towards a regulatory use of alternative developmental neurotoxicity testing (DNT). Toxicol Appl Pharmacol 354:19–23

    CAS  PubMed  Google Scholar 

  • Tonk EC, Robinson JF, Verhoef A, Theunissen PT, Pennings JL, Piersma AH (2013) Valproic acid-induced gene expression responses in rat whole embryo culture and comparison across in vitro developmental and non-developmental models. Reprod Toxicol 41:57–66

    CAS  PubMed  Google Scholar 

  • Tonk EC, Pennings JL, Piersma AH (2015) An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoic acid homeostasis. Reprod Toxicol 55:104–113

    CAS  PubMed  Google Scholar 

  • van der Burg B, van der Linden S, Man H, Winter R, Jonker L, van Vugt‐Lussenburg B, Brouwe A (2013) A panel of quantitative calux® reporter gene assays for reliable high-throughput toxicity screening of chemicals and complex mixtures. In High‐throughput screening methods in toxicity testing, pp 519–532

  • van der Linden SC, von Bergh AR, van Vught-Lussenburg BM, Jonker LR, Teunis M, Krul CA, van der Burg B (2014) Development of a panel of high-throughput reporter-gene assays to detect genotoxicity and oxidative stress. Mutat Res Genet Toxicol Environ Mutagen 760:23–32

    PubMed  Google Scholar 

  • van Thriel C, Westerink RH, Beste C, Bale AS, Lein PJ, Leist M (2012) Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology 33:911–924

    PubMed  Google Scholar 

  • van Vliet E, Kuhnl J, Goebel C, Martinozzi-Teissier S, Alepee N, Ashikaga T, Blomeke B, Del Bufalo A, Cluzel M, Corsini E et al (2018) State-of-the-art and new options to assess T cell activation by skin sensitizers: cosmetics Europe workshop. Altex 35:179–192

    PubMed  Google Scholar 

  • Waldmann T, Rempel E, Balmer NV, Konig A, Kolde R, Gaspar JA, Henry M, Hescheler J, Sachinidis A, Rahnenfuhrer J et al (2014) Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol 27:408–420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waldmann T, Grinberg M, Konig A, Rempel E, Schildknecht S, Henry M, Holzer AK, Dreser N, Shinde V, Sachinidis A et al (2017) Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol 30:905–922

    CAS  PubMed  Google Scholar 

  • Walmsley RM (2008) GADD45a-GFP GreenScreen HC genotoxicity screening assay. Expert Opin Drug Metab Toxicol 4:827–835

    CAS  PubMed  Google Scholar 

  • Weigt S, Huebler N, Braunbeck T, von Landenberg F, Broschard TH (2010) Zebrafish teratogenicity test with metabolic activation (mDarT): effects of phase I activation of acetaminophen on zebrafish Danio rerio embryos. Toxicology 275:36–49

    CAS  PubMed  Google Scholar 

  • Weng MK, Zimmer B, Poltl D, Broeg MP, Ivanova V, Gaspar JA, Sachinidis A, Wullner U, Waldmann T, Leist M (2012) Extensive transcriptional regulation of chromatin modifiers during human neurodevelopment. PLoS ONE 7:e36708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Huang CT, Chen J, Pankratz MT, Xi J, Li J, Yang Y, Lavaute TM, Li XJ, Ayala M et al (2010) Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7:90–100

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Land BW, the Doerenkamp-Zbinden foundation, the DFG (RTG1331, KoRS-CB) and the Projects from the European Union's Horizon 2020 research and innovation programme EU-ToxRisk (Grant agreement No 681002) and ENDpoiNTs (Grant agreement No 825759). We are grateful to H. Leisner and D. Fischer and the staff of the bioimaging center (BIC) for invaluable experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Leist.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dreser, N., Madjar, K., Holzer, AK. et al. Development of a neural rosette formation assay (RoFA) to identify neurodevelopmental toxicants and to characterize their transcriptome disturbances. Arch Toxicol 94, 151–171 (2020). https://doi.org/10.1007/s00204-019-02612-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02612-5

Keywords

Navigation