Skip to main content
Log in

Model-based estimation of lowest observed effect concentration from replicate experiments to identify potential biomarkers of in vitro neurotoxicity

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

A paradigm shift is occurring in toxicology following the report of the National Research Council of the USA National Academies entitled “Toxicity testing in the 21st Century: a vision and strategy”. This new vision encourages the use of in vitro and in silico models for toxicity testing. In the goal to identify new reliable markers of toxicity, the responsiveness of different genes to various drugs (amiodarone: 0.312–2.5 \({\upmu }\hbox {M}\); cyclosporine A: 0.25–2 \({\upmu }\hbox {M}\); chlorpromazine: 0.625–10 \({\upmu }\hbox {M}\); diazepam: 1–8 \({\upmu }\hbox {M}\); carbamazepine: 6.25–50 \({\upmu }\hbox {M}\)) is studied in 3D aggregate brain cell cultures. Genes’ responsiveness is quantified and ranked according to the Lowest Observed Effect Concentration (LOEC), which is estimated by reverse regression under a log-logistic model assumption. In contrast to approaches where LOEC is identified by the first observed concentration level at which the response is significantly different from a control, the model-based approach allows a principled estimation of the LOEC and of its uncertainty. The Box–Cox transform both sides approach is adopted to deal with heteroscedastic and/or non-normal residuals, while estimates from repeated experiments are summarized by a meta-analytic approach. Different inferential procedures to estimate the Box–Cox coefficient, and to obtain confidence intervals for the log-logistic curve parameters and the LOEC, are explored. A simulation study is performed to compare coverage properties and estimation errors for each approach. Application to the toxicological data identifies the genes Cort, Bdnf, and Nov as good candidates for in vitro biomarkers of toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersson H, Lindqvist E, Olson L (1997) Downregulation of brain-derived neurotrophic factor mRNA in adult rat brain after acute administration of methylmercury. Mol Chem Neuropathol 31(3):225–233

    Article  CAS  Google Scholar 

  • Anon (2006) Background review document (BRD): validation of neutral red uptake test methods nih/in vitro cytotoxicity test methods for estimating acute oral systemic toxicity. https://ntp.niehs.nih.gov/iccvam/docs/acutetox_docs/brd_tmer/brdvol1_nov2006.pdf. Accessed 18 July 2019

  • Bal-Price AK, Hogberg HT, Buzanska L, Coecke S (2010) Relevance of in vitro neurotoxicity testing for regulatory requirements: challenges to be considered. Neurotoxicol Teratol 32(1):36–41

    Article  CAS  Google Scholar 

  • Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications. Wiley, New York

    Book  Google Scholar 

  • Bickel PJ, Doksum KA (1981) An analysis of transformations revisited. J Am Stat Assoc 76(374):296–311

    Article  Google Scholar 

  • Box GE, Cox DR (1964) An analysis of transformations. J Roy Stat Soc Ser B (Methodol) 26:211–243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x

    Article  Google Scholar 

  • Carroll RJ, Ruppert D (1984) Power transformations when fitting theoretical models to data. J Am Stat Assoc 79(386):321–328

    Article  Google Scholar 

  • Carroll RJ, Ruppert D (1988) Transformation and weighting in regression, vol 30. CRC Press, Boca Raton

    Book  Google Scholar 

  • Chen CC, Hsu LW, Huang LT, Huang TL (2010) Chronic administration of cyclosporine a changes expression of BDNF and TrkB in rat hippocampus and midbrain. Neurochem Res 35(7):1098–1104

    Article  CAS  Google Scholar 

  • de Lecea L, del Rio JA, Criado JR, Alcántara S, Morales M, Danielson PE, Henriksen SJ, Soriano E, Sutcliffe JG (1997) Cortistatin is expressed in a distinct subset of cortical interneurons. J Neurosci 17(15):5868–5880

    Article  Google Scholar 

  • Dombrowski Y, O’Hagan T, Dittmer M, Penalva R, Mayoral S, Bankhead P, Fleville S, Eleftheriadis G, Zhao C, Naughton M, Hassan R, Moffat J, Falconer J, Boyd A, Hamilton P, Allen I, Kissenpfennig A, Moynagh PN, Evergren E, Fitzgerald D (2017) Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci 20:674–680

    Article  CAS  Google Scholar 

  • Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC Press, Boca Raton

    Google Scholar 

  • Fitzmaurice GM, Lipsitz SR, Parzen M (2007) Approximate median regression via the Box–Cox transformation. Am Stat 61(3):233–238

    Article  Google Scholar 

  • Harrell FE (2015) Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis. Springer, New York

    Book  Google Scholar 

  • Hill JL, Jimenez DV, Mai Y, Ren M, Hallock HL, Maynard KR, Chen HY, Hardy NF, Schloesser RJ, Maher BJ, Yang F, Martinowich K (2019) Cortistatin-expressing interneurons require TrkB signaling to suppress neural hyper-excitability. Brain Struct Funct 224(1):471–483

    Article  CAS  Google Scholar 

  • Hinkley DV, Runger G (1984) The analysis of transformed data. J Am Stat Assoc 79(386):302–309

    Article  Google Scholar 

  • Honegger P, Lenoir D, Favrod P (1979) Growth and differentiation of aggregating fetal brain cells in serumfree defined medium. Nature 282:305–8

    Article  CAS  Google Scholar 

  • Jensen SM, Kluxen FM, Ritz C (2019) A review of recent advances in benchmark dose methodology. Risk Anal. https://doi.org/10.1111/risa.13324

    Article  PubMed  Google Scholar 

  • Jiang X, Kopp-Schneider A (2014) Summarizing EC50 estimates from multiple dose–response experiments: a comparison of a meta-analysis strategy to a mixed-effects model approach. Biom J 56(3):493–512

    Article  Google Scholar 

  • Jiang X, Kopp-Schneider A (2015) Statistical strategies for averaging EC50 from multiple dose–response experiments. Arch Toxicol 89(11):2119–2127

    Article  CAS  Google Scholar 

  • Latif AM, Gilmour SG (2015) Transform-both-sides nonlinear models for in vitro pharmacokinetic experiments. Stat Methods Med Res 24(3):306–324

    Article  Google Scholar 

  • Le Dréau G, Nicot A, Benard M, Thibout H, Vaudry D, Martinerie C, Laurent M (2009) NOV/CCN3 promotes maturation of cerebellar granule neuron precursors. Mol Cell Neurosci 43:60–71

    Article  Google Scholar 

  • Mohammadi A, Amooeian VG, Rashidi E (2018) Dysfunction in brain-derived neurotrophic factor signaling pathway and susceptibility to schizophrenia, Parkinson’s and Alzheimer’s diseases. Curr Gene Ther 18(1):45–63

    Article  CAS  Google Scholar 

  • Monnet-Tschudi F, Zurich MG, Pithon E, van Melle G, Honegger P (1995) Microglial responsiveness as a sensitive marker for trimethyltin (TMT) neurotoxicity. Brain Res 690(1):8–14

    Article  CAS  Google Scholar 

  • National Research Council (2007) Toxicity testing in the 21st century: a vision and a strategy. The National Academies Press, Washington, DC

    Google Scholar 

  • Nottingham QJ, Birch JB (2000) A semiparametric approach to analysing doseresponse data. Stat Med 19(3):389–404

    Article  CAS  Google Scholar 

  • Ritz C, Streibig JC (2008) Nonlinear regression with R. Springer, Berlin

    Google Scholar 

  • Ritz C, Van der Vliet L (2009) Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests. Environ Toxicol Chem 28(9):2009–2017

    Article  CAS  Google Scholar 

  • Ritz C, Gerhard D, Hothorn LA (2013) A unified framework for benchmark dose estimation applied to mixed models and model averaging. Stat Biopharm Res 5(1):79–90

    Article  Google Scholar 

  • Ritz C, Baty F, Streibig JC, Gerhard D (2016) Dose-response analysis using R. PLoS One 10(12):1–13

    Google Scholar 

  • Silva-Peña D, García-Marchena N, Alén F, Araos P, Rivera P, Vargas A, García-Fernández MI, Martín-Velasco AI, Villanúa MA, Castilla-Ortega E, Santín L, Pavón FJ, Serrano A, Rubio G, Rodríguez de Fonseca F, Suárez J (2018) Alcohol-induced cognitive deficits are associated with decreased circulating levels of the neurotrophin BDNF in humans and rats. Addict Biol. https://doi.org/10.1111/adb.12668

    Article  PubMed  Google Scholar 

  • Spulber S, Rantamäki T, Nikkilä O, Castrén E, Weihe P, Grandjean P, Ceccatelli S (2010) Effects of maternal smoking and exposure to methylmercury on brain-derived neurotrophic factor concentrations in umbilical cord serum. Toxicol Sci 117(2):263–269

    Article  CAS  Google Scholar 

  • Wheeler MW, Shao K, Bailer AJ (2015) Quantile benchmark dose estimation for continuous endpoints. Environmetrics 26(5):363–372

    Article  Google Scholar 

  • Zurich MG, Monnet-Tschudi F, Costa LG, Schilter B, Honegger P (2004) Aggregating brain cell cultures for neurotoxicological studies. Humana Press, Totowa, pp 243–266

    Google Scholar 

  • Zurich MG, Stanzel S, Kopp-Schneider A, Prieto P, Honegger P (2013) Evaluation of aggregating brain cell cultures for the detection of acute organ-specific toxicity. Toxicol In Vitro 27(4):1416–1424

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of Marie-Gabrielle Zurich and Denise Tavel was supported by the European Union’s Seventh Framework Collaborative Large-Scale Integrating Project Predict-IV under Grant agreement no. 202222. The authors wish to thank the anonymous reviewers for the valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Calderazzo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 149 KB)

Supplementary material 2 (pdf 237 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderazzo, S., Tavel, D., Zurich, MG. et al. Model-based estimation of lowest observed effect concentration from replicate experiments to identify potential biomarkers of in vitro neurotoxicity. Arch Toxicol 93, 2635–2644 (2019). https://doi.org/10.1007/s00204-019-02520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02520-8

Keywords

Navigation