Skip to main content
Log in

Molecular characterization of Indian races of Fusarium oxysporum f. sp. lentis (Fol) based on secreted in Xylem (SIX) effector genes and development of a SIX11 gene-based molecular marker for specific detection of Fol

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Fusarium wilt of lentil caused by Fusarium oxysporum f. sp. lentis (Fol) is a destructive pathogen limiting lentil production in India. In the present study, Secreted in Xylem (SIX) effectors genes were explored in Indian races of Fol and also a diagnostic tool for reliable detection of the disease was developed. Four SIX effectors genes, SIX11, SIX13, SIX6 and SIX2 were identified in 12 isolates of Fol belonging to seven races. SIX11 was present in all the races while SIX 13 was absent in race 6 and SIX6 was present only in race 4. The phylogenetic analysis revealed the conserved nature of the SIX genes within the forma specialis and showed sequence homology with F. oxysporum f. sp. pisi. The presence of three effectors, SIX11, SIX13 and SIX6 in race 4 correlates with high disease incidence in lentil germplasms. The in-silico characterization revealed the presence of signal peptide and localization of the effectors. Further SIX11 effector gene present in all the isolates was used to develop Fol-specific molecular marker for accurate detection. The marker developed could differentiate F. oxysporum f. sp. lycopersici, F. solani, F. oxysporum, Rhizoctonia solani and Sclerotium rolfsii and had a detection limit of 0.01ng μL− 1. The effector-based marker detection helps in the unambiguous detection of the pathogen under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

Download references

Acknowledgements

The first author, K. Nishmitha acknowledges the senior research fellowship obtained from the Council of Scientific & Industrial Research (CSIR). Authors acknowledge ICAR-NBPGR for providing lentil seeds.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, K. Nishmitha, and Deeba Kamil; Material, S. C. Dubey; Methodology, Nishmitha K, Bishnu Maya Bashyal and S. C. Dubey; Software, Nishmitha K; Writing – original draft, Nishmitha K; Writing – review & editing, Bishnu Maya Bashyal and Deeba Kamil.

Corresponding author

Correspondence to Deeba Kamil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Nischitha R.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishmitha, K., Bashyal, B.M., Dubey, S.C. et al. Molecular characterization of Indian races of Fusarium oxysporum f. sp. lentis (Fol) based on secreted in Xylem (SIX) effector genes and development of a SIX11 gene-based molecular marker for specific detection of Fol. Arch Microbiol 206, 200 (2024). https://doi.org/10.1007/s00203-024-03945-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-024-03945-1

Keywords

Navigation