Skip to main content
Log in

Optimization of plasmid electrotransformation into Bacillus subtilis using an antibacterial peptide

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus subtilis can potentially serve as an efficient expression host for biotechnology due to its ability to secrete extracellular proteins and enzymes directly into the culture medium. One of the important challenges in the biotechnology industry is to optimize the transformation conditions of B. subtilis bacteria. This study aims to provide a new method to optimize the transformation conditions and improve the transformation efficiency of B. subtilis WB600. To increase the transformation efficiency in B. subtilis, two methods of adding CM11 antibacterial peptides to the bacterial medium along with electroporation and optimizing the variables including the growth medium composition, time to adding CM11 peptide, electroporation voltage, recovery medium, and cell recovery time are used. The results of this study showed that the addition of antimicrobial peptides (AMPs) with a concentration of 2 μg/ml increases the transformation efficiency by 4 times compared to the absence of AMP in the bacterial medium. Additionally, the findings from our study indicated that the most optimal rate of transformation for B. subtilis was observed at a voltage of 7.5 kV/cm, with a recovery period of 12 h. With the optimized method, the transformation efficiency came up to 1.69 × 104 CFU/µg DNA. This improvement in transformation efficiency will be attributed to the research of expression of exogenous genes in B. subtilis, gene library construction for transformation of wild-type B. subtilis strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure. 2
Figure. 3

Similar content being viewed by others

Data availability

The datasets generated and the data analysis during the current study are available from the corresponding author upon reasonable request.

References

  • Abbasali Z, Pirestani M, Dalimi A, Badri M, Fasihi-Ramandi M (2023) Anti-parasitic activity of a chimeric peptide cecropin A (2–8)-melittin (6–9)(CM11) against tachyzoites of toxoplasma gondii and the BALB/c mouse model of acute toxoplasmosis. Mol Biochem Parasitol 255:111578

    Article  PubMed  CAS  Google Scholar 

  • Aghamollaei H, Heiat M, Eftekhari Shirkouhi M, Moosazadeh Moghaddam M (2013) Increasing plasmid transformation efficiency of natural spizizen method in Bacillus Subtilis by a cell permeable peptide. Biological Journal of Microorganism 2(6):31–40

    Google Scholar 

  • Amani J, Barjini A, K., M Moghaddam, M., & Asadi, A. (2015) In vitro synergistic effect of the CM11 antimicrobial peptide in combination with common antibiotics against clinical isolates of six species of multidrug-resistant pathogenic bacteria. Protein Pept Lett 22(10):940–951

    Article  PubMed  CAS  Google Scholar 

  • Ano T, Kobayashi A, Shoda M (1990) Transformation of Bacillus subtilis with the treatment by alkali cations. Biotech Lett 12:99–104

    Article  CAS  Google Scholar 

  • Aslankoohi E, Rezaei MN, Vervoort Y, Courtin CM, Verstrepen KJ (2015) Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation. PLoS ONE 10(3):e0119364

    Article  PubMed  PubMed Central  Google Scholar 

  • Brigidi, P., Rossi, M., & Matteuzzi, D. (2000). Transformation of Bacillus subtilis PB1424 by Electroporation. Electrotransformation of Bacteria, 42–46.

  • Brown TA (2020) Gene cloning and DNA analysis: an introduction. John Wiley & Sons

    Google Scholar 

  • Cao G, Zhang X, Zhong L, Lu Z (2011) A modified electro-transformation method for Bacillus subtilis and its application in the production of antimicrobial lipopeptides. Biotech Lett 33:1047–1051

    Article  CAS  Google Scholar 

  • Chen J, Zhu Y, Fu G, Song Y, Jin Z, Sun Y, Zhang D (2016a) High-level intra-and extra-cellular production of D-psicose 3-epimerase via a modified xylose-inducible expression system in Bacillus subtilis. J Ind Microbiol Biotechnol 43(11):1577–1591

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Yan L, Wu Z, Li S, Bai Z, Yan X, Wang N, Liang N, Li H (2016b) A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid. Sci Rep 6(1):20400

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Covello G, Siva K, Adami V, Denti MA (2014) An electroporation protocol for efficient DNA transfection in PC12 cells. Cytotechnology 66:543–553

    Article  PubMed  CAS  Google Scholar 

  • Duan M, Zhang Y, Zhou B, Qin Z, Wu J, Wang Q, Yin Y (2020) Effects of Bacillus subtilis on carbon components and microbial functional metabolism during cow manure–straw composting. Biores Technol 303:122868

    Article  CAS  Google Scholar 

  • Duanis-Assaf D, Steinberg D, Shemesh M (2020) Efficiency of Bacillus subtilis metabolism of sugar alcohols governs its probiotic effect against cariogenic Streptococcus mutans. Artificial Cells, Nanomedicine, and Biotechnology 48(1):1222–1230

    Article  PubMed  CAS  Google Scholar 

  • Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16(6):269–275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grosser, M. R., Richardson, A. R. (2016). Method for preparation and electroporation of S. aureus and S. epidermidis. The Genetic Manipulation of Staphylococci: Methods and Protocols, 51–57.

  • Heiat M, Aghamollaei H, Moghaddam MM, Kooshki H (2014) Using CM11 peptide as a cell permeable agent for the improvement of conventional plasmid transformation methods in Escherichia coli and Bacillus subtilis. Minerva Biotecnol 26(3):149–157

    Google Scholar 

  • Jeon S, Kang NK, Suh WI, Koh HG, Lee B, Chang YK (2019) Optimization of electroporation-based multiple pulses and further improvement of transformation efficiency using bacterial conditioned medium for nannochloropsis salina. J Appl Phycol 31:1153–1161

    Article  CAS  Google Scholar 

  • Jeong D-E, Kim MS, Kim H-R, Choi S-K (2022) Cell factory engineering of undomesticated Bacillus strains using a modified integrative and conjugative element for efficient plasmid delivery. Front Microbiol 13:802040

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotnik T, Frey W, Sack M, Meglič SH, Peterka M, Miklavčič D (2015) Electroporation-based applications in biotechnology. Trends Biotechnol 33(8):480–488

    Article  PubMed  CAS  Google Scholar 

  • Kumari S, Booth V (2022) Antimicrobial peptide mechanisms studied by whole-cell deuterium NMR. Int J Mol Sci 23(5):2740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kusaoke H, Hayashi Y, Kadowaki Y, Kimoto H (1989) Optimum conditions for electric pulse-mediated gene transfer to Bacillus subtilis cells. Agric Biol Chem 53(9):2441–2446

    CAS  Google Scholar 

  • Lin Z, Huang L-J, Yu P, Chen J, Du S, Qin G, Zhang L, Li N, Yuan D (2023) Development of a protoplast isolation system for functional gene expression and characterization using petals of Camellia oleifera. Plant Physiol Biochem 201:107885

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Chang W, Pan L, Liu X, Su L, Zhang W, Li Q, Zheng Y (2018) An improved method of preparing high efficiency transformation Escherichia coli with both plasmids and larger DNA fragments. Ind J Microbiol 58:448–456

    Article  CAS  Google Scholar 

  • Löfblom J, Kronqvist N, Uhlén M, Ståhl S, Wernérus H (2007) Optimization of electroporation-mediated transformation: Staphylococcus carnosus as model organism. J Appl Microbiol 102(3):736–747

    Article  PubMed  Google Scholar 

  • Lu YP, Zhang C, Lv F, Bie X, Lu ZX (2012) Study on the electro-transformation conditions of improving transformation efficiency for Bacillus subtilis. Lett Appl Microbiol 55(1):9–14

    Article  PubMed  CAS  Google Scholar 

  • Matsuno Y, Ano T, Shoda M (1992) High-efficiency transformation of Bacillus subtilis NB22, an antifungal antibiotic iturin producer, by electroporation. J Ferment Bioeng 73(4):261–264

    Article  CAS  Google Scholar 

  • McDonald I, Riley P, Sharp R, McCarthy A (1995) Factors affecting the electroporation of Bacillus subtilis. J Appl Bacteriol 79(2):213–218

    Article  PubMed  CAS  Google Scholar 

  • Mirabdollah, A., Alinezhad, S., Feuk-Lagerstedt, E., & Horváth, I. S. (2011). Optimization of a protoplast transformation method for Bacillus subtilis, Bacillus megaterium, and Bacillus cereus by a plasmid pHIS 1525. Sp lipA. In Microorganisms In Industry And Environment: From Scientific and Industrial Research to Consumer Products. (pp. 333–336). World Scientific.

  • Mirnejad R., Fasihi-Ramandi, M., Behmard, E., Najafi, A., & Moghaddam, M. M. (2022). Antibacterial CM-11 peptide potency against the Gram-Positive and Gram-Negative bacterial membrane models: a molecular dynamics simulations study.

  • Nagamani, G., Alex, S., Soni, K., Anith, K., Viji, M., Kiran, A. (2019). A novel approach for increasing transformation efficiency in E. coli DH5α cells using silver nanoparticles. 3 Biotech, 9 (3), 113.

  • Park MJ, Park MS, Ji GE (2019) Improvement of electroporation-mediated transformation efficiency for a Bifidobacterium strain to a reproducibly high level. J Microbiol Methods 159:112–119

    Article  PubMed  CAS  Google Scholar 

  • Potočnik T, Miklavčič D, Lebar AM (2019) Effect of electroporation and recovery medium pH on cell membrane permeabilization, cell survival and gene transfer efficiency in vitro. Bioelectrochemistry 130:107342

    Article  PubMed  Google Scholar 

  • Priyadarshini D, Ivica J, Separovic F, De Planque MR (2022) Characterisation of cell membrane interaction mechanisms of antimicrobial peptides by electrical bilayer recording. Biophys Chem 281:106721

    Article  PubMed  CAS  Google Scholar 

  • Rahmer, R., Morabbi Heravi, K., & Altenbuchner, J. (2015). Construction of a super-competent Bacillus subtilis 168 using the PmtlA-comKS inducible cassette. Front Microbiol 6: 1431. In.

  • Rashidian G, Moghaddam MM, Mirnejad R, Azad ZM (2021) Supplementation of zebrafish (Danio rerio) diet using a short antimicrobial peptide: Evaluation of growth performance, immunomodulatory function, antioxidant activity, and disease resistance. Fish Shellfish Immunol 119:42–50

    Article  PubMed  CAS  Google Scholar 

  • Song Y, He S, Abdallah II, Jopkiewicz A, Setroikromo R, van Merkerk R, Tepper PG, Quax WJ (2021) Engineering of multiple modules to improve amorphadiene production in Bacillus subtilis using CRISPR-Cas9. J Agric Food Chem 69(16):4785–4794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sootsuwan K, Thanonkeo P, Keeratirakha N, Thanonkeo S, Jaisil P, Yamada M (2013) Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol Biofuels 6:1–13

    Article  Google Scholar 

  • Su Y, Liu C, Fang H, Zhang D (2020) Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 19(1):1–12

    Article  Google Scholar 

  • Thompson K, Collins MA (1996) Improvement in electroporation efficiency for Lactobacillus plantarum by the inclusion of high concentrations of glycine in the growth medium. J Microbiol Methods 26(1–2):73–79

    Article  CAS  Google Scholar 

  • Tran DTM, Phan TTP, Doan TTN, Tran TL, Schumann W, Nguyen HD (2020) Integrative expression vectors with Pgrac promoters for inducer-free overproduction of recombinant proteins in Bacillus subtilis. Biotechnol Rep 28:e00540

    Article  Google Scholar 

  • Turchi L, Santini T, Beccari E, Di Franco C (2012) Localization of new peptidoglycan at poles in Bacillus mycoides, a member of the Bacillus cereus group. Arch Microbiol 194:887–892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vojcic L, Despotovic D, Martinez R, Maurer K-H, Schwaneberg U (2012) An efficient transformation method for Bacillus subtilis DB104. Appl Microbiol Biotechnol 94:487–493

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Zhu H, Liu J, Yang Q, Shao X, Bi F, Hu C, Huo H, Chen K, Yi G (2020) Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana. BMC Plant Biol 20:1–10

    Article  Google Scholar 

  • Xue G-P, Johnson JS, Dalrymple BP (1999) High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Methods 34(3):183–191

    Article  CAS  Google Scholar 

  • Yi Y, Kuipers OP (2017) Development of an efficient electroporation method for rhizobacterial Bacillus mycoides strains. J Microbiol Methods 133:82–86

    Article  PubMed  CAS  Google Scholar 

  • Zhang XZ, Zhang YHP (2011) Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb Biotechnol 4(1):98–105

    Article  ADS  PubMed  Google Scholar 

  • Zhang H, Li Y, Chen X, Sheng H, An L (2011) Optimization of electroporation conditions for Arthrobacter with plasmid PART2. J Microbiol Methods 84(1):114–120

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Ding Z-T, Shu D, Luo D, Tan H (2015) Development of an efficient electroporation method for iturin A-producing Bacillus subtilis ZK. Int J of Molecular Sci 16(4):7334–7351

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Reza Roosta Azad, the late professor of the Faculty of Chemical Engineering at Sharif University of Technology, for his efforts, assistance, and guidance in completing this project.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the concept and design of the study. Preparation, implementation, data collection, and analysis were done by Mohamadsadegh Mohamadzadeh, Mohsen Ghiasi, and Hossein Aghamollaei. The first draft of the manuscript was written by Mohamadsadegh Mohamadzadeh and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hossein Aghamollaei.

Ethics declarations

Conflict of interest statement

The authors of this article do not have any conflicts of interest.

Ethical approval

This article does not contain any studies with human or animal participants.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 57 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadzadeh, M., Ghiasi, M. & Aghamollaei, H. Optimization of plasmid electrotransformation into Bacillus subtilis using an antibacterial peptide. Arch Microbiol 206, 116 (2024). https://doi.org/10.1007/s00203-024-03847-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-024-03847-2

Keywords

Navigation