Skip to main content

Advertisement

Log in

Ethanolic extract from fruiting bodies of Cordyceps militaris HL8 exhibits cytotoxic activities against cancer cells, skin pathogenic yeasts, and postharvest pathogen Penicillium digitatum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cordyceps militaris is a well-known medicinal mushroom in Asian countries. This edible fungus has been widely exploited for traditional medicine and functional food production. C. militaris is a heterothallic fungus that requires both the mating-type loci, MAT1-1 and MAT1-2, for fruiting body formation. However, recent studies also indicated two groups of C. militaris, including monokaryotic strains carrying only MAT1-1 in their genomes and heterokaryotic strains harboring both MAT1-1 and MAT1-2. These strain groups are able to produce fruiting bodies under suitable cultivating conditions. In previous work, we showed that monokaryotic strains are more stable than heterokaryotic strains in fruiting body formation through successive culturing generations. In this study, we report a high cordycepin-producing monokaryotic C. militaris strain (HL8) collected in Vietnam. This strain could form normal fruiting bodies with high biological efficiency and contain a cordycepin content of 14.43 mg/g lyophilized fruiting body biomass. The ethanol extraction of the HL8 fruiting bodies resulted in a crude extract with a cordycepin content of 69.15 mg/g. Assays of cytotoxic activity on six human cancer cell lines showed that the extract inhibited the growth of all these cell lines with the IC50 values of 6.41–11.51 µg/mL. Notably, the extract significantly reduced cell proliferation and promoted apoptosis of breast cancer cells. Furthermore, the extract also exhibited strong antifungal activity against Malassezia skin yeasts and the citrus postharvest pathogen Penicillium digitatum. Our work provides a promising monokaryotic C. militaris strain as a bioresource for medicine, cosmetics, and fruit preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the available data are provided in this manuscript.

References

  • Ashraf SA, Elkhalifa AEO, Siddiqui AJ, Patel M, Awadelkareem AM, Snoussi M, Ashraf MS, Adnan M, Hadi S (2020) Cordycepin for health and wellbeing: a potent bioactive metabolite of an entomopathogenic medicinal fungus Cordyceps with its nutraceutical and therapeutic potential. Molecules 25:2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y-S, Liu B-L, Chang Y-N (2011) Effects of light and heavy metals on Cordyceps militaris fruit body growth in rice grain-based cultivation. Korean J Chem Eng 28:875–879

    Article  Google Scholar 

  • Choi S, Lim M-H, Kim KM, Jeon BH, Song WO, Kim TW (2011) Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol Appl Pharmacol 257:165–173

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Paje LA, Kwon B, Noh J, Lee S (2021) Quantitative analysis of cordycepin in Cordyceps militaris under different extraction methods. J Appl Biol Chem 64:153–158

    Article  Google Scholar 

  • Cunningham KG, Manson W, Spring FS, Hutchinson SA (1950) Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166:949–949

    Article  CAS  PubMed  ADS  Google Scholar 

  • Das SK, Masuda M, Sakurai A, Sakakibara M (2010) Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia 81:961–968

    Article  PubMed  Google Scholar 

  • Dong J, Liu M, Lei C, Zheng X, Wang Y (2012) Effects of selenium and light wavelengths on liquid culture of Cordyceps militaris Link. Appl Biochem Biotechnol 166:2030–2036

    Article  CAS  PubMed  Google Scholar 

  • Geran RI, Greenberg NH, Macdonald MM, Schumacher AM (1972) Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemotherapy Reports 3:59–61

    Google Scholar 

  • Hu Z, Lai Y, Ma C, Zuo L, Xiao G, Gao H, Xie B, Huang X, Gan H, Huang D (2022) Cordyceps militaris extract induces apoptosis and pyroptosis via caspase-3/PARP/GSDME pathways in A549 cell line. Food Sci Nutr 10:21–38

    Article  CAS  PubMed  Google Scholar 

  • Hur H (2008) Chemical ingredients of Cordyceps militaris. Mycobiology 36:233–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong J-W, Park C, Cha H-J, Hong SH, Park S-H, Kim G-Y, Kim WJ, Kim CH, Song KS, Choi YH (2018) Cordycepin inhibits lipopolysaccharide-induced cell migration and invasion in human colorectal carcinoma HCT-116 cells through down-regulation of prostaglandin E2 receptor EP4. BMB Rep 51:532–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Q, Lou Z, Wang H, Chen C (2019) Antimicrobial effect and proposed action mechanism of cordycepin against Escherichia coli and Bacillus subtilis. J Microbiol 57:288–297

    Article  CAS  PubMed  Google Scholar 

  • Kunhorm P, Chaicharoenaudomrung N, Noisa P (2019) Enrichment of cordycepin for cosmeceutical applications: culture systems and strategies. Appl Microbiol Biotechnol 103:1681–1691

    Article  CAS  PubMed  Google Scholar 

  • Lee H-H, Kang N, Park I, Park J, Kim I, Kim J, Kim N, Lee J-Y, Seo Y-S (2017) Characterization of newly bred Cordyceps militaris strains for higher production of cordycepin through HPLC and URP-PCR analysis. J Microbiol Biotechnol 27:1223–1232

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Lee W-Y, Jung K, Kwon YS, Kim D, Hwang GS, Kim C-E, Lee S, Kang KS (2019) The inhibitory effect of cordycepin on the proliferation of MCF-7 breast cancer cells, and its mechanism: an investigation using network pharmacology-based analysis. Biomolecules 9:414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y-T, Liang S-M, Wu Y-J, Wu Y-J, Lu Y-J, Jan Y-J, Ko B-S, Chuang Y-J, Shyue S-K, Kuo C-C (2019) Cordycepin suppresses endothelial cell proliferation, migration, angiogenesis, and tumor growth by regulating focal adhesion kinase and p53. Cancers 11:168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling E, Yin J, Xin X, Weng Y, Gui Z (2017) Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration. PLoS ONE 12:e0186279

    Article  Google Scholar 

  • Lu Y, Xia Y, Luo F, Dong C, Wang C (2016) Functional convergence and divergence of mating-type genes fulfilling in Cordyceps militaris. Fungal Genet Biol 88:35–43

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhang S, Du M (2015) Cordycepin from Cordyceps militaris prevents hyperglycemia in alloxan-induced diabetic mice. Nutr Res 35:431–439

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Ohta Y, Lee J-B, Hayashi K, Fujita A, Park DK, Hayashi T (2007) In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J Agric Food Chem 55:10194–10199

    Article  CAS  PubMed  Google Scholar 

  • Pan B-S, Wang Y-K, Lai M-S, Mu Y-F, Huang B-M (2015) Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways. Sci Rep 5:13372

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Park BT, Na KH, Jung EC, Park JW, Kim HH (2009) Antifungal and anticancer activities of a protein from the mushroom Cordyceps militaris. Korean J Physiol Pharmacol 13:49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phull A-R, Ahmed M, Park H-J (2022) Cordyceps militaris as a bio functional food source: pharmacological potential, anti-inflammatory actions and related molecular mechanisms. Microorganisms 10:405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pintathong P, Chomnunti P, Sangthong S, Jirarat A, Chaiwut P (2021) The feasibility of utilizing cultured Cordyceps militaris residues in cosmetics: biological activity assessment of their crude extracts. Journal of Fungi 7:973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G (2016) Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging 8:603–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price PJ, Suk WA, Peters RL, Martin CE, Bellew TM, Huebner RJ (1975) Cordycepin inhibition of 3-methylcholanthrene-induced transformation in vitro. Proc Soc Exp Biol Med 150:650–653

    Article  CAS  PubMed  Google Scholar 

  • Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461

    Article  CAS  PubMed  Google Scholar 

  • Saunte DML, Gaitanis G, Hay RJ (2020) Malassezia-associated skin diseases, the use of diagnostics and treatment. Front Cell Infect Microbiol 10:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha B, Kim H-K, Sung G-H, Spatafora JW, Sung J-M (2004) Bipolar heterothallism, a principal mating system of Cordyceps militaris in vitro. Biotechnol Bioprocess Eng 9:440–446

    Article  CAS  Google Scholar 

  • Shrestha B, Han S-K, Sung J-M, Sung G-H (2012) Fruiting body formation of Cordyceps militaris from multi-ascospore isolates and their single ascospore progeny strains. Mycobiology 40:100–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Shweta AS, Komal KA (2023) A brief review on the medicinal uses of Cordyceps militaris. Pharmacol Res Mod Chin Med 7:100228

    Article  Google Scholar 

  • Singh BN, Zhang D, Tang Q, He X, Wang Y, Zhu G, Yu L (2023) Antimicrobial, antioxidant, anti-inflammatory, and cytotoxic activities of Cordyceps militaris spent substrate. PLoS ONE 18:e0291363

    Article  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Hu T, Guo Y, Liang Y (2018) Preservation affects the vegetative growth and fruiting body production of Cordyceps militaris. World J Microbiol Biotechnol 34:1–9

    Article  CAS  Google Scholar 

  • Theelen B, Cafarchia C, Gaitanis G, Bassukas ID, Boekhout T, Dawson TL (2018) Malassezia ecology, pathophysiology, and treatment. Med Mycol 56:S10–S25

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Li Y, Shen Y, Li Q, Wang Q, Feng L (2015) Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin (Review). Oncol Lett 10:595–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran HM, Le DH, Nguyen V-AT, Vu TX, Thanh NTK, Giang DH, Dat NT, Pham HT, Muller M, Nguyen HQ (2022) Penicillium digitatum as a model fungus for detecting antifungal activity of botanicals: an evaluation on Vietnamese medicinal plant extracts. J Fungi 8:956

    Article  CAS  Google Scholar 

  • Trigo P, Gutteridge W, Williamson J (1971) The effects of cordycepin on malaria parasites. Trans R Soc Trop Med Hyg 65:514–520

    Article  Google Scholar 

  • Tuli HS, Sharma AK, Sandhu SS, Kashyap D (2013) Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci 93:863–869

    Article  CAS  PubMed  Google Scholar 

  • Vu TX, Thai H-D, Dinh B-HT, Nguyen HT, Tran HTP, Bui K-LT, Tran TB, Pham HT, Mai LTD, Le DH, Nguyen HQ, Tran V-T (2023a) Effects of MAT1-2 spore ratios on fruiting body formation and degeneration in the heterothallic fungus Cordyceps militaris. J Fungi 9:971

    Article  CAS  Google Scholar 

  • Vu TX, Tran TB, Tran MB, Do TTK, Do LM, Dinh MT, Thai H-D, Pham D-N, Tran V-T (2023b) Efficient control of the fungal pathogens Colletotrichum gloeosporioides and Penicillium digitatum infecting citrus fruits by native soilborne Bacillus velezensis strains. Heliyon 9:e13663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellham PAD, Hafeez A, Gregori A, Brock M, Kim D-H, Chandler D, de Moor CH (2021) Culture degeneration reduces sex-related gene expression, alters metabolite production and reduces insect pathogenic response in Cordyceps militaris. Microorganisms 9:1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JY, Zhang QX, Leung PH (2007) Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice. Phytomedicine 14:43–49

    Article  PubMed  Google Scholar 

  • Xia Y, Luo F, Shang Y, Chen P, Lu Y, Wang C (2017) Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol 24:1479–1489.e1474

  • Yang C, Kao Y, Huang K, Wang C, Lin L (2012) Cordyceps militaris and mycelial fermentation induced apoptosis and autophagy of human glioblastoma cells. Cell Death Dis 3:e431–e443

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon S, Park S, Park Y (2018) The anticancer properties of cordycepin and their underlying mechanisms. Int J Mol Sci 19:3027

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue K, Ye M, Zhou Z, Sun W, Lin X (2013) The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol 65:474–493

    Article  CAS  PubMed  Google Scholar 

  • Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S (2012) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 12:1–22

    Google Scholar 

Download references

Acknowledgements

The authors thank the Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology of Vietnam, and the University of Science, Vietnam National University, Hanoi, for the excellent infrastructure support.

Funding

This research was funded by the National Center for Technological Progress, Ministry of Science and Technology of Vietnam.

Author information

Authors and Affiliations

Authors

Contributions

TXV: conceived and designed the experiments; performed the experiments; analyzed and interpreted the data; and wrote the paper. TBT, H-HV, YTHL, PHN, TTD, T-HN: performed the experiments and analyzed and interpreted the data. V-TT: conceived and designed the experiments; analyzed and interpreted the data; and wrote the paper.

Corresponding authors

Correspondence to Tao Xuan Vu or Van-Tuan Tran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Ran Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, T.X., Tran, T.B., Vu, HH. et al. Ethanolic extract from fruiting bodies of Cordyceps militaris HL8 exhibits cytotoxic activities against cancer cells, skin pathogenic yeasts, and postharvest pathogen Penicillium digitatum. Arch Microbiol 206, 97 (2024). https://doi.org/10.1007/s00203-024-03833-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-024-03833-8

Keywords

Navigation