Skip to main content

Advertisement

Log in

Development of one-step multiplex RT-PCR assay for rapid simultaneous detection of five RNA viruses and Acidovorax citrulli in major cucurbitaceous crops in China

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cucurbitaceous fruits and vegetables are important crops. Viral and bacterial diseases cause substantial economic losses to cucurbit crops globally. For rapid detection of these pathogens and improved disease control, a one-step multiplex reverse-transcription polymerase chain reaction (mRT-PCR) system was created. This method allowed for the concurrent detection of Tobacco mosaic virus (TMV), Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), Cucumber green mottle mosaic virus (CGMMV), Cucumber mosaic virus (CMV), and Acidovorax citrulli. Five pairs of specific primers were created according to the conserved regions around the coat protein (CP) genes of each virus, and one pair was based on the A. citrulli internal transcribed spacer (ITS). To limit false negatives, one pair of primers, created based on the Transcriptional elongation factor 1-α (EF1-α) from the major cucurbitaceous crop species, was put into the mRT-PCR reaction system. Primer concentrations, annealing temperature, extension time, and amplification cycles were optimized. Anticipated fragments of 152 bp (TMV), 205 bp (ZYMV), 318 bp (WMV), 419 bp (CGMMV), 529 bp (CMV), 662 bp (A. citrulli), and 821 bp (EF1-α) were amplified by the multiplex RT-PCR system, and their origin was established via DNA sequencing. This method was successfully used to examine field-collected seed samples of cucurbitaceous crops from China. The results demonstrated that the one-step mRT-PCR technique is a quick, efficient, and sensitive assay for the concurrent detection of six pathogens of cucurbits. It provides a method for monitoring and preventing these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Ainsworth GC (1935) Mosaic diseases of the cucumber. Ann Appl Biol 22(1):55–67. https://doi.org/10.1111/j.1744-7348.1935.tb07708.x

    Article  Google Scholar 

  • Alishiri A, Rakhshandehroo F, Zamanizadeh HR, Palukaitis P (2013) Prevalence of tobacco mosaic virus in Iran and evolutionary analyses of the coat protein gene. Plant Pathol J 29(3):260

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson CW (1954) Two watermelon mosaic virus strains from central Florida. Phytopathology 44:198–202

    Google Scholar 

  • Bi X, Li X, Yu H, An M, Li R, Xia Z, Wu Y (2019) Development of a multiplex RT-PCR assay for simultaneous detection of cucumber green mottle mosaic virus and acidovorax citrulli in watermelon. PeerJ 7:e7539. https://doi.org/10.7717/peerj.7539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blancard D, Lecoq H, Pitrat M (1994) A colour atlas of cucurbit diseases: observation, identification and control. Manson Publishing Ltd, London

    Google Scholar 

  • Burdman S, Walcott R (2012) Acidovorax citrulli: generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Mol Plant Pathol 13(8):805–815. https://doi.org/10.1111/j.1364-3703.2012.00810.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Zhao W, Gu Q, Chen Q, Lin S, Zhu S (2008) Real time TaqMan RT-PCR assay for the detection of cucumber green mottle mosaic virus. J Virol Methods 149(2):326–329

    Article  CAS  Google Scholar 

  • Creager AN, Scholthof KBG, Citovsky V, Scholthof HB (1999) Tobacco mosaic virus: pioneering research for a century. Plant Cell 11(3):301–308. https://doi.org/10.1105/tpc.11.3.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damayanti TA, Sholihah I, Hidayat SH, Wiyono S (2020). New natural host of Tobacco mosaic virus on three cucurbits in Java, Indonesia. In IOP Conference Series: Earth and Environmental Science. Vol 468. IOP Publishing, Bristol. p. 012034

  • de Souza Aguiar RW, Martins AR, Nascimento VL, Capone A, Costa LTM, Campos FS, Fidelis RR, dos Santos GR, Resende RO, Nagata T (2019) Multiplex RT-PCR identification of five viruses associated with the watermelon crops in the Brazilian Cerrado. African J Micro Res 13(3):60–69. https://doi.org/10.5897/AJMR2018.8976

    Article  Google Scholar 

  • Dombrovsky A, Tran-Nguyen LT, Jones RA (2017) Cucumber green mottle mosaic virus: rapidly increasing global distribution, etiology, epidemiology, and management. Annu Rev Phytopathol 55:231–256. https://doi.org/10.1146/annurev-phyto-080516-035349

    Article  CAS  PubMed  Google Scholar 

  • Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE (2000) Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev 13(4):559–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Salas FM, Peters J, Boonham N, Cuadrado IM, Janssen D (2012) Co-infection with cucumber vein yellowing virus and cucurbit yellow stunting disorder virus leading to synergism in cucumber. Plant Pathol 61(3):468–478

    Article  Google Scholar 

  • Jacquemond M (2012) Cucumber Mosaic Virus. Viruses and virus diseases of vegetables in the mediterranean basin. Elsevier, Amsterdam

    Google Scholar 

  • Jeevalatha A, Kumar R, Raigond B, Sundaresha S, Sharma S, Singh BP (2015) Duplex realtime RT-PCR assay for the detection of Potato spindle tuber viroid (PSTVd) along with ef 1-α gene of potato. Phytoparasitica 43(3):317–325

    Article  CAS  Google Scholar 

  • Katsarou K, Bardani E, Kallemi P, Kalantidis K (2019) Viral detection: past, present, and future. BioEssays 41(10):1900049. https://doi.org/10.1002/bies.201900049

    Article  Google Scholar 

  • Kwon JY, Hong JS, Kim MJ, Choi SH, Min BE, Song EG, Ryu KH (2014) Simultaneous multiplex PCR detection of seven cucurbit-infecting viruses. J Virol Methods 206:133–139

    Article  CAS  PubMed  Google Scholar 

  • Lecoq H, Katis N (2014) Control of cucurbit viruses. Advances in virus research, vol 90. Academic Press, Amsterdam, pp 255–296. https://doi.org/10.1016/B978-0-12-801246-8.00005-6

    Chapter  Google Scholar 

  • Li X, Zhu H, Liu H, Guo X (1996) Identification of Tobacco mosaic virus infecting watermelon (Citrullus lanatus). J Shandong Agricul Uni 27(2):181–184

    Google Scholar 

  • Li F, Zuo R, Abad J, Xu D, Bao G, Li R (2012) Simultaneous detection and differentiation of four closely related sweet potato potyviruses by a multiplex one-step RT-PCR. J Virol Methods 186(1–2):161–166

    Article  CAS  PubMed  Google Scholar 

  • Li R, Berendsen S, Ling KS (2016) A duplex real-time RT-PCR system with an internal control offers sensitive and reliable broad-spectrum detection of Squash mosaic virus variants. Plant Dis 100(3):625–629

    Article  CAS  PubMed  Google Scholar 

  • Li M, Liao M, Jiang K, Zhong Y, Wu G, Qing L (2021) Establishment of a multiplex PCR assay for detection of five maize-infecting viruses. J Plant Protec 48(2):465–466. https://doi.org/10.13802/j.cnki.zwbhxb.2021.2020281

    Article  CAS  Google Scholar 

  • Lima JAA, Nascimento AKQ, Radaelli P, Silva AKF, Silva FR (2014) A Technique combining immunoprecipitation and RT-PCR for RNA plant virus detection. J Phytopatholo 162(7–8):426–433. https://doi.org/10.1111/jph.12208

    Article  CAS  Google Scholar 

  • Lisa V, Dellavalle G (1981) Characterization of two potyviruses from zucchini squash. Phytopathology 100:279–286

    Article  Google Scholar 

  • Liu J, Zhang G, Zhu X, Wang F, Shi C, Li X (2007) Cloning and sequence analysis of the coat protein genes of four viruses from one mix-infected pumpkin plants. Acta Agriculturae Boreali-Sinica 25(5):6–10. https://doi.org/10.7668/hbnxb.2016.02.034

    Article  CAS  Google Scholar 

  • Liu Y, Wang Y, Wang X, Zhou G (2009) Molecular characterization and distribution of cucumber green mottle mosaic virus in China. J Phytopathol 157(7–8):393–399. https://doi.org/10.1111/j.1439-0434.2008.01509.x

    Article  Google Scholar 

  • Liu H, Wu K, Wu W, Mi W, Hao X, Wu Y (2019a) A multiplex reverse transcription PCR assay for simultaneous detection of six main RNA viruses in tomato plants. J Virol Methods 265:53–58

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li F, Li Y, Zhang S, Gao X, Xie Y, Tao X (2019b) Identification, distribution and occurrence of viruses in the main vegetables of China. Scientia Agricultura Sinica 52(2):239–261. https://doi.org/10.3864/j.issn.0578-1752.2019.02.005

    Article  CAS  Google Scholar 

  • Mandal S, Mandal B, Haq QMR, Varma A (2008) Properties, diagnosis and management of cucumber green mottle mosaic virus. Plant Viruses 2(1):25–34

    Google Scholar 

  • Menzel W, Jelkmann W, Maiss E (2002) Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J Virol Methods 99(1–2):81–92

    Article  CAS  PubMed  Google Scholar 

  • Purcifull D, Hiebert E, Edwardson J (1984a) Watermelon mosaic virus 2. CMI/AAB Descriptions of plant viruses, No. 293 (No. 63, rev.). Commonwealth Mycological Institute and Association of Applied Biologists, Kew, England, UK

  • Purcifull D, Edwardson J, Hiebert E, Gonsalves D (1984b) Papaya ringspot virus. CMI/AAB Descriptions of Plant Viruses. No. 292. Commonwealth Mycological Institute and Association of Applied Biologists, Kew, England, UK

  • Qin B, Cai J, Liu Z, Chen Y, Zhu G, Huang F (2005) Preliminary identification of a Cucumber green mottle mosaic virus infecting pumpkin. Plant Quarantine 19(4):198–200. https://doi.org/10.19662/j.cnki.issn1005-2755.2005.04.003

    Article  Google Scholar 

  • Renner SS, Schaefer H (2016) Phylogeny and evolution of the Cucurbitaceae. Genetics and genomics of Cucurbitaceae. Springer, Cham, pp 13–23

    Chapter  Google Scholar 

  • Rubio L, Giménez K, Romero J, Font-San-Ambrosio MI, Alfaro-Fernández A, Galipienso L (2022) Detection and absolute quantitation of watermelon mosaic virus by real-time RT-PCR with a TaqMan probe. J Virol Methods 300:114416

    Article  CAS  PubMed  Google Scholar 

  • Schaad NW, Postnikova E, Sechler A, Claflin LE, Vidaver AK, Jones JB, Ramundo BA (2008) Reclassification of subspecies of acidovorax avenae as A. Avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. Nov. Systematic Appl Microbiolo 31(6):434–446

    Article  CAS  Google Scholar 

  • Shang H, Zhou X, Wu J (2010) Polyclonal antibody-based dot-ELISA and immunocapture-RT-PCR for cucumber green mottle mosaic virus detection. J Zhejiang Univ 36(5):485–490

    CAS  Google Scholar 

  • Thomson KG, Dietzgen RG, Gibbs AJ, Tang YC, Liesack W, Teakle DS, Stackebrandt E (1995) Identification of zucchini yellow mosaic potyvirus by RT-PCR and analysis of sequence variability. J Virol Methods 55(1):83–96

    Article  CAS  PubMed  Google Scholar 

  • Tian G, Miao H, Yang Y, Zhou J, Lu H, Wang Y, Xie B, Zhang S, Gu X (2016) Genetic analysis and fine mapping of watermelon mosaic virus resistance gene in cucumber. Mol Breeding 36(9):1–11. https://doi.org/10.1007/s11032-016-0524-5

    Article  CAS  Google Scholar 

  • Tian Y, Zhao Y, Zhou J, Sun T, Luo X, Kurowski C, Gong W, Hu B, Walcott RR (2020) Prevalence of acidovorax citrulli in commercial cucurbit seedlots during 2010–2018 in China. Plant Dis 104(1):255–259. https://doi.org/10.1094/PDIS-03-19-0666-RE

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhang H, Yu X, Wu Y, Zhang W, Zhang C (2010) Establishment and application of multiplex RT-PCR for simultaneous detection of five watermelon viruses ZYMV, WMV, TMV, SqMV and CMV. Acta Phytopathologica Sinica 40(1):27–32

    CAS  Google Scholar 

  • Wang D, Li G, Du SS (2017) Occurrence of viruses infecting melon in Xinjiang of China and molecular characterization of watermelon mosaic virus isolates. Eur J Plant Pathol 147(4):919–931. https://doi.org/10.1007/s10658-016-1060-1

    Article  CAS  Google Scholar 

  • Webb RE, Foster RE (1966) A strain of tobacco mosaic virus isolated from muskmelon. Plant Dis Rep 50:49–52

    Google Scholar 

  • Webb RE, Scott HA (1965) Isolation and identification of watermelon mosaic viruses 1 and 2. Phytopathology 55(8):895–900

    Google Scholar 

  • Xie Y, Wu J (2022) Detection of Cucumber green mottle mosaic virus (CGMMV) in cucurbitaceous crop seeds by RT-PCR. Plant Virology. Springer, New York, pp 275–282

    Chapter  Google Scholar 

  • Yan S, Yang Y, Wang T, Zhao T, Schaad NW (2013) Genetic diversity analysis of acidovorax citrulli in China. Eur J Plant Pathol 136(1):171–181. https://doi.org/10.1007/s10658-012-0152-9

    Article  Google Scholar 

  • Yu Y, Zhao Z, Jiang D, Wu Z, Li S (2013) A one-step multiplex RT-PCR assay for simultaneous detection of four viruses that infect peach. Lett Appl Microbiol 57(4):350–355

    Article  CAS  PubMed  Google Scholar 

  • Zhang JX, Yun-Feng WU, Wang R, Luo ZP (2007) Complete nucleotide sequence of watermelon mosaic virus China isolate. Chin J Virol 23(2):153–156

    CAS  Google Scholar 

  • Zhang YJ, Li GF, Li MF (2009) Occurrence of cucumber green mottle mosaic virus on cucurbitaceous plants in China. Plant Dis 93(2):200–200. https://doi.org/10.1094/PDIS-93-2-0200C

    Article  CAS  PubMed  Google Scholar 

  • Zhao MF, Chen J, Zheng HY, Adams MJ, Chen JP (2003) Molecular analysis of Zucchini yellow mosaic virus isolates from Hangzhou China. J Phytopatholo 151(6):307–311

    Article  CAS  Google Scholar 

  • Zheng G, Dong T (1991) Occurrence of Zucchini yellow mosaic virus in Xinjiang. Acta Phytopathol Sin 21(7):72

    Google Scholar 

  • Zhu PX, Zhang QP, Ji ZLF, Z. (2020) First report of tobacco mosaic virus infecting Lagenaria siceraria (Molina) standl var clavata makino in China. J Plant Pathol. https://doi.org/10.1007/s42161-020-00574-7

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Guifen Li and Mr. Meisheng Wei (Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine) for providing MMV, PRSV, SqMV, and TRSV.

Funding

This work was supported by the Basic Scientific Research Foundation of the Chinese Academy of Inspection and Quarantine (2020JK017), the National Key R&D Program of China (No. 2021YFD1400100, 2021YFD1400103), and the Fellowship of China Postdoc Research Foundation (2021M693037).

Author information

Authors and Affiliations

Authors

Contributions

ZZ, ZZ, TZ, LZ, and YZ conceived and designed the experiments. ZX and JX performed the experiments. ZX, QT, WZ, LZ, and YZ analyzed the data. ZZ and YZ wrote the paper.

Corresponding authors

Correspondence to Lixia Zhao or Yongjiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Xiang, J., Tian, Q. et al. Development of one-step multiplex RT-PCR assay for rapid simultaneous detection of five RNA viruses and Acidovorax citrulli in major cucurbitaceous crops in China. Arch Microbiol 204, 696 (2022). https://doi.org/10.1007/s00203-022-03304-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-03304-y

Keywords

Navigation