Skip to main content
Log in

Paenibacillus albiflavus sp. nov., a bacterium isolated from soil

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Strain 18JY21-1T, a Gram-positive, endospore-forming, motile, and rod-shaped bacterium, was isolated from soil in South Korea and was characterised to determine its taxonomic position. Phylogenetic analysis based on the 16S rRNA gene sequence of strain 18JY21-1T revealed that the strain 18JY21-1T belongs to the genus Paenibacillus in the family Paenibacillaceae in the class Bacilli. The highest degree of sequence similarities of strain 18JY21-1T was found with Paenibacillus doosanensis CAU 1055T (97.7%) and Paenibacillus protaetiae KACC 19327T (94.4%). In genome analysis, the calculated average nucleotide identity (ANI) and the digital DNA–DNA hybridization (DDH) values between strain 18JY21-1T and Paenibacillus protaetiae KACC 19327T were 66.3% and 22.8%, respectively. Chemotaxonomic data revealed that the predominant fatty acids were anteiso-C15:0 (38.7%) and C16:0 (18.0%). A complex polar lipid profile consisted of major amounts of diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG). The cell wall peptidoglycan was meso-diaminopimelic acid. The predominant respiratory quinone was MK-7. Based on the phylogenetic, chemotaxonomic, and phenotypic data, strain 18JY21-1T (= KCTC 3396T = JCM 33183T) should be classified as a type strain of a novel species, for which the name Paenibacillus albiflavus sp. nov. is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek 64:253–260

    Article  CAS  Google Scholar 

  • Ash C, Priest FG, Collins MD (1994) Paenibacillus gen. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 51. Int J Syst Bacteriol 44:852. https://doi.org/10.1099/00207713-44-4-852

  • Baik KS, Lim CH, Choe HN, Kim EM, Seong CN (2011) Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int J Syst Evol Microbiol 61:529–534

    Article  CAS  Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  Google Scholar 

  • Chung YR, Kim CH, Hwang I, Chun J (2000) Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50:1495–1500

    Article  CAS  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    Article  CAS  Google Scholar 

  • Devereux R, He SH, Doyle CL, Orkland S, Stahl DA, LeGall J, Whitman WB (1990) Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 172:3609–3619

  • Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool 20(4):406–416

    Article  Google Scholar 

  • Gerhardt P, Murray RGE, Wood WA, Krieg NR (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington

    Google Scholar 

  • Grady EN, MacDonald J, Liu L et al (2016) Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 15:203

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322

    Article  CAS  Google Scholar 

  • Im WT, Jung HM, Ten LN, Kim MK, Bora N et al (2008) Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 58:2348–2353

    Article  CAS  Google Scholar 

  • Kempf MJ, Chen F, Kern R, Venkateswaran K (2005) Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. Astrobiology 5:391–405

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol Mar 62(Pt3):716–721

    Article  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  CAS  Google Scholar 

  • Kong BH, Liu QF, Liu M, Liu Y, Liu L et al (2013) Paenibacillus typhae sp. nov., isolated from roots of Typha angustifolia L. Int J Syst Evol Microbiol 63:1037–1044

    Article  CAS  Google Scholar 

  • Lányi B (1987) Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67

  • Lee I, Kim YO, Park SC, Chun J (2015) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    Article  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60

    Article  Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Priest FG (1977) Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev 41:711–753

    Article  CAS  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. MIDI Inc, Newark

    Google Scholar 

  • Seo WT, Kahng GG, Nam SH, Choi SD, Suh HH et al (1999) Isolation and characterization of a novel exopolysaccharide-producing Paenibacillus sp. WN9 KCTC 8951P. J Microbiol Biotechnol 9:820–825

    CAS  Google Scholar 

  • Shin YK, Lee JS, Chun CO, Kim HJ, Park YH (1996) Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. J Microbiol Biotechnol 6:68–69

    CAS  Google Scholar 

  • Slepecky RA, Hemphill HE (1991) The genus Bacillus nonmedical. In: Balows A, Triiper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York

    Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P (ed) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654

    Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the research grant from Seoul Women’s University (2021), and MISP (Ministry of Science, ICT & Future Planning), Korea, under the National Program for Excellence in SW supervised by the IITP (Institute of Information & communications Technology Planning & Evaluation) (2016-0-00022) and by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR201801204)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathiyaraj Srinivasan.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2964 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J.H., Lee, S.E. & Srinivasan, S. Paenibacillus albiflavus sp. nov., a bacterium isolated from soil. Arch Microbiol 203, 4973–4979 (2021). https://doi.org/10.1007/s00203-021-02476-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02476-3

Keywords

Navigation