Skip to main content
Log in

Effect of iron and phosphorus on the microalgae growth in co-culture

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Iron and phosphorus (P) are the important micro- and macro-nutrient for microalgae growth, respectively. However, the effect of iron and P on microalgae growth in co-culture associating with the formation of dominate algae has not been investigated before. In the current study, Anabaene flos-aquae, Chlorella vulgaris and Melosira sp. were co-cultivated under the addition of different initial iron and P to reveal the effect of iron and phosphorus on the growth of microalgae. The results showed that the mean growth rate of A. flos-aquae, C. vulgaris and Melosira was 0.270, 0.261 and 0.062, respectively, indicating that the A. flos-aquae and C. vulgaris algae are liable to be the dominant algae while the growth of Melosira was restrained when co-cultured. The ratio of Fe to P has a significant impact on the growth of microalgae and could be regarded as an indicator of algae growth. Microalgae showed a much more obvious uptake of iron compared to that of P. The information obtained in the current study was useful for the forecast of water quality and the control of microalgae bloom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Administration TSEP (2002) Determination methods for examination of water and wastewater 4edn. China Environmental Science Press, Beijing

    Google Scholar 

  • Agrawal SC (2012) Factors controlling induction of reproduction in algae–review: the text. Folia Microbiol 57(5):387–407

    Article  CAS  Google Scholar 

  • Ahern KS, Udy AJW (2008) In situ field experiment shows Lyngbya majuscula (cyanobacterium) growth stimulated by added iron, phosphorus and nitrogen. Harmful Algae 7(4):389–404

    Article  CAS  Google Scholar 

  • Ahern KS, Ahern CR, Udy JW (2007) Nutrient additions generate prolific growth of Lyngbya majuscula (cyanobacteria) in field and bioassay experiments. Harmful Algae 6(1):134–151. https://doi.org/10.1016/j.hal.2006.08.004

    Article  CAS  Google Scholar 

  • Alexova R, Fujii M, Birch D, Cheng J, Waite TD, Ferrari BC, Neilan BA (2011) Iron uptake and toxin synthesis in the bloom-forming Microcystis aeruginosa under iron limitation. Environ Microbiol 13(4):1064–1077

    Article  CAS  Google Scholar 

  • Chu FF, Chu PN, Cai PJ, Li WW, Lam PKS, Zeng RJ (2013) Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol 134:341–346. https://doi.org/10.1016/j.biortech.2013.01.131

    Article  CAS  PubMed  Google Scholar 

  • Concas A, Steriti A, Pisu M, Cao G (2014) Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors. Bioresour Technol 153:340–350. https://doi.org/10.1016/j.biortech.2013.11.085

    Article  CAS  PubMed  Google Scholar 

  • Dai R, Wang P, Jia P, Zhang Y, Chu X, Wang Y (2016) A review on factors affecting microcystins production by algae in aquatic environments. World J Microbiol Biotechnol 32(3):1–7

    Article  CAS  Google Scholar 

  • Fang KT (1980) The uniform design: application of number-theoretic methods in experimental design. Acta Mathemat Appl Sinica 3:4

    Google Scholar 

  • Fujii M, Rose AL, Omura T, Waite TD (2010) Effect of Fe(II) and Fe(III) transformation kinetics on iron acquisition by a toxic strain of Microcystis aeruginosa. Environ Sci Technol 44(6):1980–1986

    Article  CAS  Google Scholar 

  • Gress CD, Treble RG, Matz CJ, Weger HG (2004) Biological availability of iron to the freshwater cyanobacterium Anabaena flos-aquae. J Phycol 40(5):879–886. https://doi.org/10.1111/j.1529-8817.2004.03165.x

    Article  CAS  Google Scholar 

  • Ji Y, Sherrell RM (2008) Differential effects of phosphorus limitation on cellular metals in chlorella and microcystis. Limnol Oceanogr 53(5):1790–1804

    Article  CAS  Google Scholar 

  • Jiao Y, Ouyang HL, Jiang YJ, Kong XZ, He W, Liu WX, Yang B, Xu FL (2017) Effects of phosphorus stress on the photosynthetic and physiological characteristics of Chlorella vulgaris based on chlorophyll fluorescence and flow cytometric analysis. Ecol Indic 78:131–141. https://doi.org/10.1016/j.ecolind.2017.03.010

    Article  CAS  Google Scholar 

  • Kalla N, Khan S (2016) effect of nitrogen, phosphorus concentrations, and salinity ranges on growth, biomass and lipid accumulation of chlorella vulgaris. Int J Pharml Sci Res 7(1):397–405

    CAS  Google Scholar 

  • Krachler R, Krachler RF, Wallner G, Steier P, El Abiead Y, Wiesinger H, Jirsa F, Keppler BK (2016) Sphagnum-dominated bog systems are highly effective yet variable sources of bio-available iron to marine waters. Sci Total Environ 556:53–62. https://doi.org/10.1016/j.scitotenv.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  • Kravchuk ES, Ivanova EA, Gladyshev MI (2006) Seasonal dynamics of akinetes of Anabaena flos-aquae in bottom sediments and water column of small Siberian reservoir. Aquat Ecol 40(3):325–336. https://doi.org/10.1007/s10452-006-9031-9

    Article  CAS  Google Scholar 

  • Lammers PJ (1982) Iron acquisition by cyanobacteria: siderophore production and iron transport by Anabaena.

  • Lehtoranta J, Ekholm P, Pitkänen H (2008) Eutrophication-driven sediment microbial processes can explain the regional variation in phosphorus concentrations between Baltic Sea sub-basins. J Mar Syst 74(1):495–504

    Article  Google Scholar 

  • Li X, Hu HY, Gan K, Sun YX (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101(14):5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016

    Article  CAS  Google Scholar 

  • Liao H, Normand B, Cordier C, Maurin G (2003) Uniform design method for optimization of process parameters of plasma sprayed TiN coatings. Surf Coat Technol 176(1):1–13

    Article  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99(11):4717–4722. https://doi.org/10.1016/j.biortech.2007.09.073

    Article  CAS  PubMed  Google Scholar 

  • Moore CM, Mills MM, Arrigo KR, Bermanfrank I, Bopp L, Boyd PW, Galbraith ED, Geider RJ, Guieu C, Jaccard SL (2013) Processes and patterns of oceanic nutrient limitation. Nat Geosci 6(9):701–710

    Article  CAS  Google Scholar 

  • Orlowska E, Roller A, Pignitter M, Jirsa F, Krachler R, Kandioller W, Keppler BK (2017) Synthetic iron complexes as models for natural iron-humic compounds: synthesis, characterization and algal growth experiments. Sci Total Environ 577:94–104. https://doi.org/10.1016/j.scitotenv.2016.10.109

    Article  CAS  PubMed  Google Scholar 

  • Ou MM, Wang Y, Zhou BX, Cai WM (2006) Effects of iron and phosphorus on Microcystis physiological reactions. Biomed Environ Sci 19(5):399–404

    CAS  PubMed  Google Scholar 

  • Peili W (2010) Study on the formation mechanism of diatom blooms in Hanjiang River from hydrodynamics and nutrition. Microb Ecol 63(2):369–382

    Google Scholar 

  • Peipei Z (2015) The mechanism for response of Phaeodactylum tricornutum to environmental factors. J Bio Mate Bioene 13(6):870–905

    Google Scholar 

  • Perry MJ (1976) Phosphate utilization by an oceanic diatom in phosphorus-limited chemostat culture and in the oligotrophic waters of the central North Pacific. Limnol Oceanogr 21(1):88–107

    Article  CAS  Google Scholar 

  • Santos FM, Mazur LP, Mayer DA, Vilar VJP, Pires JCM (2019) Inhibition effect of zinc, cadmium, and nickel ions in microalgal growth and nutrient uptake from water: an experimental approach. Chem Eng J 366:358–367. https://doi.org/10.1016/j.cej.2019.02.080

    Article  CAS  Google Scholar 

  • Satomi U, Kohji S, Masumi Y, Mariko K, Kenshi K (2008) Significance of Mn and Fe for growth of coastal marine diatom Thalassiosira weissflogii. Fish Sci 74(5):1137–1145

    Article  Google Scholar 

  • Song G, Xu G, Quan Y, Yuan Q, Davies PA (2016) Uniform design for the optimization of Al 2 O 3 nanofilms produced by electrophoretic deposition. Surf Coat Technol 286:268–278

    Article  CAS  Google Scholar 

  • Spijkerman E (2008) Phosphorus limitation of algae living in iron-rich, acidic lakes. Aquat Microb Ecol 53(2):201–210. https://doi.org/10.3354/ame01244

    Article  Google Scholar 

  • Sterner RW, Smutka TM, McKay RML, Qin XM, Brown ET, Sherrell RM (2004) Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol Oceanogr 49(2):495–507. https://doi.org/10.4319/lo.2004.49.2.0495

    Article  CAS  Google Scholar 

  • Ushizaka S, Kuma K, Suzuki K (2011) Effects of Mn and Fe on growth of a coastal marine diatom Talassiosira weissflogii in the presence of precipitated Fe(III) hydroxide and EDTA-Fe(III) complex. Fish Sci 77(3):411–424

    Article  CAS  Google Scholar 

  • Wang B, Axe L, Michalopoulou ZH, Wei L (2011) Effects of Cd, Cu, Ni, and Zn on brown tide alga Aureococcus anophagefferens growth and metal accumulation. Environ Sci Technol 46(1):517–524

    Article  Google Scholar 

  • Wang Y, Wu M, Yu J, Zhang J, Zhang R, Zhang L, Chen G, Wang Y, Wu M, Yu J (2014) Differences in growth, pigment composition and photosynthetic rates of two phenotypes Microcystis aeruginosa strains under high and low iron conditions. Biochem Syst Ecol 55(4):112–117

    Article  CAS  Google Scholar 

  • Weger HG, Matz CJ, Magnus RS, Walker CN, Fink MB, Treble RG (2006) Differences between two green algae in biological availability of iron bound to strong chelators. Can J Bot-Rev Can Bot 84(3):400–411. https://doi.org/10.1139/b06-013

    Article  CAS  Google Scholar 

  • Weng H-X, Qin Y-C, Sun X-W, Chen J-F (2008) Limitation and combined effects of iron and phosphorus on the growth of Prorocentrum micans Ehrenberg (Dinophyceae) and Cryptomonas sp (Cryptophyceae). Environ Geol 55(7):1431–1436

    Article  CAS  Google Scholar 

  • Wilhelm SW, Trick CG (1939) Iron-limited growth of cyanobacteria: multiple siderophore production is a common response. Limnol Oceanogr 39(8):1979–1984

    Article  Google Scholar 

  • Yu C, Zhang J, Wu L, Liu Y, Ge G (2015) Effects of heavy metal and nutrients on benthic microbial communities in freshwater sediment of Poyang Lake (China). J Res Sci Technol 12(2):105–111

    Google Scholar 

  • Yucheng C, Zhuojia L, Xiaojuan H, Yu X, Zhiwei S, Yiwen L, Guoliang W (2017) Effects of phosphorus concentration and nitrogen-phosphorus ratio on absorption of nitrogen and phosphorus by Chlorella pyrenoidosa Ecological. Science 36(5):34–40

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 51708130 and 51308131).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongting Qiu or Zhihong Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Communicated by Erko stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Qiu, Y., He, L. et al. Effect of iron and phosphorus on the microalgae growth in co-culture. Arch Microbiol 203, 733–740 (2021). https://doi.org/10.1007/s00203-020-02074-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-02074-9

Keywords

Navigation