Skip to main content
Log in

Profiling of gene expression in methicillin-resistant Staphylococcus aureus in response to cyclo-(l-Val-l-Pro) and chloramphenicol isolated from Streptomyces sp., SUK 25 reveals gene downregulation in multiple biological targets

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Chloramphenicol (CAP) and cyclo-(l-Val-l-Pro) were previously isolated from Streptomyces sp., SUK 25 which exhibited a high potency against methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to profile gene expression of MRSA treated with CAP and cyclo-(l-Val-l-Pro) compounds using DNA microarray. Treatment of MRSA with CAP resulted in upregulation of genes involved in protein synthesis, suggesting the coping mechanism of MRSA due to the inhibition of protein synthesis effect from CAP. Most upregulated genes in cyclo-(l-Val-l-Pro) were putative genes with unknown functions. Interestingly, genes encoding ribosomal proteins, cell membrane synthesis, DNA metabolism, citric acid cycle and virulence were downregulated in MRSA treated with cyclo-(l-Val-l-Pro) compound, suggesting the efficacy of this compound in targeting multiple biological pathways. Contrary to CAP, with only a single target, cyclo-(l-Val-l-Pro) isolated from this study had multiple antimicrobial targets that can delay antibiotic resistance and hence is a potential antimicrobial agent of MRSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alshaibani MM, Jalil J, Sidik NM, Edrada-Ebel R, Zin NM (2016) Isolation and characterization of cyclo-(tryptophanyl-prolyl) and chloramphenicol from Streptomyces sp. SUK 25 with antimethicillin-resistant Staphylococcus aureus activity. Drug Des Devel Ther 10:1817–1827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alshaibani MM, Zin NM, Jalil J, Sidik N, Ahmad SJ, Kamal N, Edrada-Ebel R (2017) Isolation, purification, and characterization of five active diketopiperazine derivatives from endophytic Streptomyces SUK 25 with antimicrobial and cytotoxic activities. J Microbiol Biotechn 27:1249–1256

    CAS  Google Scholar 

  • Anderson Kelsi L, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, Olson PD, Projan SJ, Dunman PM (2006) Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188:6739–6756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basri DF, Abdulla NA, Khairon R, Ishak SF, Zin NM (2015) Antagonistic effect of tannin on oxacillin efficacy against methicillin-resistant Staphylococcus aureus (MRSA) by time-kill assay. Middle East J Sci Res 23:2470–2478

    CAS  Google Scholar 

  • Boligon AA, Piana M, Kubica TF, Mario DN, Dalmolin TV, Bonez PC, Weiblen R, Lovato L, Alves SH, Campos MMA, Athayde ML (2015) HPLC analysis and antimicrobial, antimycobacterial and antiviral activities of Tabernaemontana catharinensis A. DC J Appl Biomed 13:7–18

    Google Scholar 

  • Borthwick AD (2012) 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 112:3641–3716

    CAS  PubMed  Google Scholar 

  • Bumgarner R (2013) Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol 101:22-1

    Google Scholar 

  • Chambers HF, DeLeo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao T, Wang G, Ji Z, Liu Z, Hou L, Wang J, Wang J (2017) Transcriptome analysis of three sheep intestinal regions reveals key pathways and hub regulatory genes of large intestinal lipid metabolism. Sci Rep 7:5345

    PubMed  PubMed Central  Google Scholar 

  • Chow L (2015) The effect of sub inhibitory concentrations of antibiotics on bacterial evolution. Master’s thesis, MacQuarie University, North Ryde, Australia.

  • Chung PY, Chung LY, Navaratnam P (2013) Transcriptional profiles of the response of methicillin-resistant Staphylococcus aureus to pentacyclic Triterpenoids. PLoS ONE 8:e56687

    CAS  PubMed  PubMed Central  Google Scholar 

  • C.L.S.I. Clinical and Laboratory Standards Institute (2011) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard. M07-A8. 8th edition. Wayne, PA, USA

  • Dalgaard P, Ross T, Kamperman L, Neumeyer K, McMeekin TA (1994) Estimation of bacterial growth rates from turbidimetric and viable count data. Int J Food Microbiol 23:391–404

    CAS  PubMed  Google Scholar 

  • Daskalaki A (2012) Medical advancements in aging and regenerative technologies: clinical tools and applications. IGI Global, Pennsylvania

    Google Scholar 

  • David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23:616–687

    CAS  PubMed  PubMed Central  Google Scholar 

  • den Reijer PM, Lemmens-den Toom N, Kant S, Snijders SV, Boelens H, Tavakol M, Verkaik NJ, van Belkum A, Verbrugh HA, van Wamel WJ (2013) Characterization of the humoral immune response during Staphylococcus aureus bacteremia and global gene expression by Staphylococcus aureus in human blood. PLoS ONE 8:e53391

    Google Scholar 

  • Denève C, Bouttier S, Dupuy B, Barbut F, Collignon A, Janoir C (2009) Effects of subinhibitory concentrations of antibiotics on colonization factor expression by moxifloxacin-susceptible and moxifloxacin-resistant Clostridium difficile strains. Antimicrob Agents Chemother 53:5155–5162

    PubMed  PubMed Central  Google Scholar 

  • Deniss GJ, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Google Scholar 

  • East SP, Silver LL (2013) Multitarget ligands in antibacterial research: progress and opportunities. Expert Opin Drug Discov 8:143–156

    CAS  PubMed  Google Scholar 

  • Eliopoulos GM, Eliopoulos CT (1988) Antibiotic combinations: should they be tested? Clin Microbiol Rev 1:139–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evers S, Di Padova K, Meyer M, Langen H, Fountoulakis M, Keck W, Gray CP (2001) Mechanism-related changes in the gene transcription and protein synthesis patterns of Haemophilus influenzae after treatment with transcriptional and translational inhibitors. Proteomics 1:522–544

    CAS  PubMed  Google Scholar 

  • Gullon B, Pintado ME, Perez-Alverez JA, Manuel V-M (2016) Assessment of polyphenolic profile and antibacterial activity of pomegranate peel (Punica granatum) flour obtained from co-product of juice extraction. Food Control 59:94–98

    CAS  Google Scholar 

  • Gunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE (2016) Antibacterial effects of curcumin: an in vitro minimum inhibitory concentration study. Toxicol Ind Health 32:246–250

    CAS  PubMed  Google Scholar 

  • Hadidi A, Czosnek H, Barba M (2004) DNA microarrays and their potential applications for the detection of plant viruses, viroids, and phytoplasmas. J Plant Pathol 86:97–104

    CAS  Google Scholar 

  • Hallin M, De Mendonça R, Denis O, Lefort A, El Garch F, Butaye P, Hermans K, Struelens MJ (2011) Diversity of accessory genome of human and livestock-associated ST398 methicillin resistant Staphylococcus aureus strains. Infect Genet Evol 11:290–299

    CAS  PubMed  Google Scholar 

  • Harkins CP, Pichon B, Doumith M, Parkhill J, Westh H, Tomasz A, de Lencastre H, Bentley SD, Kearns AM, Holden MTG (2017) Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol 18:130

    PubMed  PubMed Central  Google Scholar 

  • Henry M Jr, Osier C, Maderazo EG (1981) Chloramphenicol: a review of its use in clinical practice. Rev Infect Dis 3:479–491

    Google Scholar 

  • Huang P, Xie F, Ren B, Wang Q, Wang J, Wang Q, Abdel-Mageed WM, Liu M, Han J, Oyeleye A, Shen J, Song F, Dai H, Liu X, Zhang L (2016) Anti-MRSA and anti-TB metabolites from marine-derived Verrucosispora sp. MS100047. Appl Micobiol Biotechnol 100:7437–7447

    CAS  Google Scholar 

  • Ishak SF, Ghazali AR, Zin NM, Basri DF (2016) Pterostilbene enhanced anti-methicillin resistant Staphylococcus aureus (MRSA) activity of oxacillin. Am J Infect Dis 1:1–10

    Google Scholar 

  • Jevons MP, Coe AW, Parker MT (1961) Methicillin-resistance in staphylococci. Lancet 281:904–907

    Google Scholar 

  • Johari SA, Mohtar M, Mohammad SA, Sahdan R, Shaameri Z, Hamzah AS, Mohammat MF (2015) In vitro inhibitory and cytotoxic activity of MFM 501, a novel codonopsinine derivative, against methicillin-resistant Staphylococcus aureus clinical isolates. BioMed Res Int 2015:823829

    PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein E, Smith DL, Laxminarayan R (2007) Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis 13:1840–1846

    PubMed  PubMed Central  Google Scholar 

  • Kozlovsky AG, Vinokurova NG, Adanin VM (2000) Diketopiperazine Alkaloids from the fungus Penicillium piscarium westling. Prikl Biokhim Mikrobiol 36:271–275

    Google Scholar 

  • Kuroda M, Ohta T, Hayashi H (1995) Isolation and the gene cloning of an alkaline shock protein in methicillin-resistant Staphylococcus aureus. Biochem Biophys Res Commun 207:978–984

    CAS  PubMed  Google Scholar 

  • Luo M, Tang G, Ju J, Lu L, Huang H (2016) A new diketopiperazine derivative from a deep sea-derived Streptomyces sp. SCSIO 04496. Nat Prod Res 30:138–143

    PubMed  Google Scholar 

  • Maltezou HC, Giamarellou H (2006) Community-acquired methicillin-resistant Staphylococcus aureus infections. Int J Antimicrob Agents 27:87–96

    CAS  PubMed  Google Scholar 

  • Martins MB, Carvalho I (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 63:9923–9932

    CAS  Google Scholar 

  • Miles AA, Misra SS, Irwin JO (1938) The estimation of the bactericidal power of the blood. J Hyg (Lond) 38:732–749

    CAS  Google Scholar 

  • Nathwani D, Morgan M, Masterton RG, Dryden M, Cookson BD, French G, Lewis D, British Society for Antimicrobial Chemotherapy Working Party on Community-onset MRSA Infections (2008) Guidelines for UK practice for the diagnosis and management of methicillin-resistant Staphylococcus aureus (MRSA) infections presenting in the community. J Antimicrob Chemother 61:976–994

    CAS  PubMed  Google Scholar 

  • Ng WL, Kazmierczak KM, Robertson GT, Gilmour R, Winkler ME (2003) Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. J Bacteriol 185:359–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak BK, Mondal S, Barat C (2017) Inhibition of Escherichia coli ribosome subunit dissociation by chloramphenicol and blasticidin: a new mode of action of the antibiotics. Lett Appl Microbiol 64:79–85

    CAS  PubMed  Google Scholar 

  • Qiu J, Zhou D, Qin L, Han Y, Wang X, DU Z, Song Y, Yang R (2006) Microarray expression profiling of Yersinia pestis in response to chloramphenicol. FEMS Microbiol Lett 263:26–31

    CAS  PubMed  Google Scholar 

  • Rayner C, Munckhof WJ (2005) Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus. Intern Med J 35:S3–S16

    CAS  PubMed  Google Scholar 

  • Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:814–821

    PubMed  Google Scholar 

  • Schmid A, Wolfensberger A, Nemeth J, Schreiber PW, Sax H, Kuster SP (2019) Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: systematic review and meta-analysis. Sci Rep 9(1):15290

    PubMed  PubMed Central  Google Scholar 

  • Sianglum W, Srimanote P, Taylor PW, Rosado H, Voravuthikunchai SP (2012) Transcriptome analysis of responses to rhodomyrtone in methicillin-resistant Staphylococcus aureus. PLoS ONE 7:e45744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SB, Young K, Silver LL (2017) What is an "ideal" antibiotic? Discovery challenges and path forward. Biochem Pharmacol 133:63–73

    CAS  PubMed  Google Scholar 

  • Struelens MJ, Deplano A, Godard C, Maes N, Serruys E (1992) Epidemiologic typing and delineation of genetic relatedness of methicillin-resistant Staphylococcus aureus by macrorestriction analysis of genomic DNA by using pulsed-field gel electrophoresis. J Clin Microbiol 30:2599–25605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sung JML, Lindsay JA (2008) Staphylococcus aureus strains that are hypersusceptible to resistance gene transfer from Enterococci. Antimicrob Agents Chemother 51:2189–2191

    Google Scholar 

  • Tacconelli E (2008) Methicillin-resistant Staphylococcus aureus: risk assessment and infection control policies. Clin Microbiol Infect 14:407–410

    CAS  PubMed  Google Scholar 

  • Turos E, Shim JY, Wang Y, Greenhalgh K, Reddy GS, Dickey S, Lim DV (2007) Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 17:53–56

    CAS  PubMed  Google Scholar 

  • Utaida S, Dunman PM, Macapagal D, Murphy E, Projan SJ, Singh VK, Jayaswal RK, Wilkinson BJ (2003) Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology 149:2719–2732

    CAS  PubMed  Google Scholar 

  • VanBogelen RA, Neidhardt FC (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci USA 87:5589–5593

    CAS  PubMed  Google Scholar 

  • Wang D, Yu L, Xiang H, Fan J, He L, Guo N, Feng H, Deng X (2008) Global transcriptional profiles of Staphylococcus aureus treated with berberine chloride. FEMS Microbiolo Lett 279:217–225

    CAS  Google Scholar 

  • Wang P, Xi L, Liu P, Wang Y, Wang W, Huang Y, Zhu W (2013) Diketopiperazine derivatives from the marine-derived actinomycete Streptomyces sp. FXJ7.328. Mar Drugs 11:1035–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Werth BJ, Jain R, Hahn A, Cummings L, Weaver T, Waalkes A, Sengupta D, Salipante SJ, Rakita RM, Butler-Wu SM (2018) Emergence of dalbavancin non-susceptible, vancomycin-intermediate Staphylococcus aureus (VISA) after treatment of MRSA central line-associated bloodstream infection with a dalbavancin-and vancomycin-containing regimen. Clin Microbiol Infect 24:429.e1–429.e5

    CAS  Google Scholar 

  • Wieczerzak M, Kudłak B, Yotova G, Tsakovski S, Simeonov V, Namieśnik J (2018) Impact of inorganic ions and pH variations on toxicity and endocrine potential of selected environmentally relevant pharmaceuticals. Environ Pollut 237:549–558

    CAS  PubMed  Google Scholar 

  • Yuan J, Chow DC, Huang W, Palzkill T (2011) Identification of a β-lactamase inhibitory protein variant that is a potent inhibitor of Staphylococcus PC1 β-Lactamase. J Mol Biol 406:730–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zin NM, Loi CS, Sarmin NM, Rosli AN (2010) Cultivation-dependent characterization of endophytic actinomycetes. Res J Microbiol 5:717–724

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education (MOHE) under Grant (FRGS/1/2011/ST/UKM/02/1); and Universiti Kebangsaan Malaysia under Grant (MI-2018-004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhanna M. Al-shaibani or Nik Marzuki Sidik.

Ethics declarations

Conflict of interest

All the authors declare no conflicts of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zin, N.M., Al-shaibani, M.M., Jalil, J. et al. Profiling of gene expression in methicillin-resistant Staphylococcus aureus in response to cyclo-(l-Val-l-Pro) and chloramphenicol isolated from Streptomyces sp., SUK 25 reveals gene downregulation in multiple biological targets. Arch Microbiol 202, 2083–2092 (2020). https://doi.org/10.1007/s00203-020-01896-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01896-x

Keywords

Navigation