Skip to main content

Advertisement

Log in

Dissecting microbial community structure in sewage treatment plant for pathogens’ detection using metagenomic sequencing technology

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Continuous observation of wastewater treatment plants is very crucial to keep them safe for proper use and protection from pathogenic contamination. Illumina sequencing technology was used for microbiome structuring from various samples taken from different portions of the wastewater treatment plant, including influent, activated, return sludge and effluent, where different microbial compositions were found. The effluent section was found to have pathogenic microbes such as viruses, Alpha- and deltaproteobacteria, Actinobacteria, Bacteroidetes, clostridia, and bacilli in various concentrations. The presence of viruses, Mycobacterium sp., Mycobacterium fortuitum, bacteroidia, and bacilli was investigated. The species Mycobacterium was found to be higher in quantity in the effluent section. Viruses, including hepatitis A and E, were detected in higher quantity in the effluent part of the sludge in comparison with the influent part of the plant. Our discovery reveals the significance and observation of wastewater treatment plants for the existence of water-borne pathogens in the effluent, principally due to the effect on humans while reusing the water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12:18

    Google Scholar 

  • Albertsen M, Hansen LBS, Saunders AM, Nielsen PH, Nielsen KL (2006) A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J 6:1094–1106

    Google Scholar 

  • Ali N, Gong H, Giwa AS, Yuan Q, Wang KJ (2019a) Metagenomic analysis and characterization of acidogenic microbiome and effect of pH on organic acid production. Arch Microbiol 201:1163–1171

    CAS  PubMed  Google Scholar 

  • Ali N, Gong H, Liu X, Giwa AS, Yuan Q, Wang KJ (2019b) Evaluation of bacterial association in methane generation pathways of an anaerobic digesting sludge via metagenomic sequencing. Arch Microbiol. https://doi.org/10.1007/s00203-019-01716-x

    Article  PubMed  Google Scholar 

  • Bibby K, Viau E, Peccia J (2010) Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Res 44:4252–4260

    CAS  PubMed  Google Scholar 

  • Bragg L, Tyson GW (2014) Metagenomics using next-generation sequencing. In: Paulsen IT, Holmes AJ (eds) Environmental microbiology: methods and protocols, methods in molecular biology, vol 1096, 2nd edn. Humana Press, New York, pp 183–201

    Google Scholar 

  • Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I (2016) Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels 9:26

    PubMed  PubMed Central  Google Scholar 

  • Carducci A, Morici P, Pizzi F, Battistini R, Rovini E, Verani M (2008) Study of the viral removal efficiency in an urban wastewater treatment plant. Water Sci Technol 58(4):893–897

    CAS  PubMed  Google Scholar 

  • Ewert DL, Paynter M (1980) Enumeration of bacteriophages and host bacteria in sewage and the activated-sludge treatment process. Appl Environ Microbiol 39(3):576–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11:759–769

    CAS  PubMed  Google Scholar 

  • Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, Kinoshita R, Spratt BG (2003) Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 41(5):2068–2079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grozdanov L, Raasch C, Schulze J, Sonnenborn U, Gottschalk G, Hacker J, Dobrindt U (1917) Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle. J Bacteriol 186(16):5432–5441

    Google Scholar 

  • Helbling DE, Johnson DR, Lee TK, Scheidegger A, Fenner K (2015) A framework for establishing predictive relationships between specific bacterial 16S rRNA sequence abundances and biotransformation rates. Water Res 70:471–484

    CAS  PubMed  Google Scholar 

  • Hu M, Wang XH, Wen XH, Xia Y (2012) Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour Technol 117:72–79

    CAS  PubMed  Google Scholar 

  • Huson D, Mitra S, Ruscheweyh H, Weber N, Schuster S (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–1560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibekwe AM, Leddy M, Murinda SE (2013) Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing. PLoS ONE 8(11):79490

    Google Scholar 

  • Johnson DR, Lee TK, Park J, Fenner K, Helbling DE (2015) The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability. Environ Microbiol 17(12):4851–4860

    CAS  PubMed  Google Scholar 

  • Ju F, Guo F, Ye L, Xia Y, Zhang T (2014) Metagenomic analysis on seasonal microbial variations of activated sludge from a full-scale wastewater treatment plant over 4 years. Environ Microbiol Rep 6:80–89

    CAS  PubMed  Google Scholar 

  • Kaevska M, Slana I, Kralik P, Reischl U, Orosova J, Holcikova A, Pavlik I (2011) ‘‘Mycobacterium avium subsp hominissuis’’ in neck lymph nodes of children and their environment examined by culture and triplex quantitative real-time PCR. Clin Microbiol 49(1):167–172

    Google Scholar 

  • Kaevska M, Videnska P, Vasickova P (2016) Changes in microbial composition of wastewater during treatment in a full-scale plant. Curr Microbiol 72:128–132

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:354–357

    Google Scholar 

  • Karch H, Tarr PI, Bielaszewska M (2005) Enterohaemorrhagic Escherichia coli in human medicine. Int J Med Microbiol 295(6–7):405–418

    CAS  PubMed  Google Scholar 

  • Kwon S, Kim TS, Yu GH, Jung JH, Park HD (2010) Bacterial community composition and diversity of a full-scale integrated fixed-film activated sludge system as investigated by pyrosequencing. J Microbiol Biotechnol 20(12):1717–1723

    PubMed  Google Scholar 

  • La Rosa G, Pourshaban M, Iaconelli M, Muscillo M (2010) Quantitative real-time PCR of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy. Ann Ist Super Sanita 46(3):266–273

    PubMed  Google Scholar 

  • Lee DY, Shannon K, Beaudette LA (2006) Detection of bacterial pathogens in municipal wastewater using an oligonucleotide microarray and real-time quantitative PCR. Microbiol Methods 65(3):453–467

    Google Scholar 

  • Lee SH, Kang HJ, Park HD (2015) Influence of influent wastewater communities on temporal variation of activated sludge communities. Water Res 73:132–144

    CAS  PubMed  Google Scholar 

  • Li A, Chu Y, Wang X, Ren L, Yu J, Liu X (2013) A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels 6:3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480:368–U120

    CAS  PubMed  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    CAS  PubMed  Google Scholar 

  • Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Baelum J, Kimbrel J (2014) Metagenomics reveals sediment microbial community response to deepwater horizon oil spill. ISME 8:1464–1475

    CAS  Google Scholar 

  • Maunula L, Kaupke A, Vasickova P, Soderberg K, Kozyra I, Lazic S, van der Poel WHM, Bouwknegt M, Rutjes S, Willems KA, Moloney R, D’Agostino M, Husman AMD, von Bonsdorff CH, Rzezutka A, Pavlik I, Petrovic T, Cook N (2013) Tracing enteric viruses in the European berry fruit supply chain. Int J Food Microbiol 167(2):177–185

    PubMed  Google Scholar 

  • Mayo B, Sinderen D (2010) Bifidobacteria: genomics and molecular aspects. Caister Academic Press, Wymondham (ISBN 978-1-904455-68-4)

    Google Scholar 

  • McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN, Sogin ML (2010) Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12(2):378–392

    CAS  PubMed  Google Scholar 

  • Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386

    CAS  Google Scholar 

  • Mitra S, Rupek P, Richter DC, Urich T, Gilbert JA, Meyer F (2011) Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG. BMC Bioinform 12:21

    Google Scholar 

  • Muszynski A, Tabernacka A, Milobedzka A (2015) Long-term dynamics of the microbial community in a full-scale wastewater treatment plant. Int Biodeterior Biodegrad 100:44–51

    CAS  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–U70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radomski N, Betelli L, Moilleron R, Haenn S, Moulin L, Cambau E, Rocher V, Goncalves A, Lucas FS (2011) Mycobacterium behavior in wastewater treatment plant, a bacterial model distinct from Escherichia coli and enterococci. Environ Sci Technol 45(12):5380–5386

    CAS  PubMed  Google Scholar 

  • Sanchez O, Ferrera I, Gonzalez JM, Mas J (2013) Assessing bacterial diversity in a seawater-processing wastewater treatment plant by 454-pyrosequencing of the 16S rRNA and amoA genes. Microbiol Biotechnol 6:435–442

    Google Scholar 

  • Savichtcheva O, Okabe S (2006) Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res 40(13):2463–2476

    CAS  PubMed  Google Scholar 

  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 99(22):14422

    CAS  PubMed  Google Scholar 

  • Steyer A, Gutierrez-Aguirre I, Racki N, Beigot Glaser S, Brajer Humar B, Strazar M, Skrjanc I, Poljsak-Prijatelj M, Ravnikar M, Rupnik M (2015) The detection rate of enteric viruses and Clostridium difficile in a waste water treatment plant effluent. Food Environ Virol 07:164–172

    CAS  Google Scholar 

  • Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626

    CAS  PubMed  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varela AR, Manaia CM (2013) Human health implications of clinically relevant bacteria in wastewater habitats. Environ Sci Pollut Res Int 20(6):3550–3569

    CAS  PubMed  Google Scholar 

  • Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H (2002) Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek 81(1–4):665–680

    CAS  PubMed  Google Scholar 

  • Wong MT, Zhang D, Li J, Hui RKH, Tun HM, Brar MS (2013) Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment. Biotechnol Biofuels 6:38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Yu K, Xia Y, Lau FTK, Tang DTW, Fung WC (2014) Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. Appl Microbiol Biotechnol 98:5709–5718

    CAS  PubMed  Google Scholar 

  • Ye L, Zhang T (2013) Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biotechnol 97(6):2681–2690

    CAS  PubMed  Google Scholar 

  • Ye L, Zhang T, Wang T, Fang Z (2012) Microbial structures, functions, and metabolic pathways in wastewater treatment bioreactors revealed using high-throughput sequencing. Environ Sci Technol 46(24):13244–13252

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Major Science and Technology Program for Water Pollution Control and Treatment of China (Grant no. 2017ZX07102-004), and National Natural Science Foundation of China (Grant no. 21206084). We are also grateful to University of Chinese Academy of Sciences, China for additional support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasir Ali or Kaijun Wang.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest. All the authors read and approved the final manuscript.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giwa, A.S., Ali, N., Athar, M.A. et al. Dissecting microbial community structure in sewage treatment plant for pathogens’ detection using metagenomic sequencing technology. Arch Microbiol 202, 825–833 (2020). https://doi.org/10.1007/s00203-019-01793-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01793-y

Keywords

Navigation