Skip to main content
Log in

Lectin-based detection of Escherichia coli and Staphylococcus aureus by flow cytometry

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

This study develops a flow cytometry analysis of the bacterial pathogens Escherichia coli and Staphylococcus aureus based on a ligand–bioreceptor interaction. We used fluorescently labeled plant lectins as natural receptors that could specifically interact with the cell wall carbohydrates of bacteria. An epifluorescence microscopy was used as an additional approach to confirm and visualize lectin–carbohydrate interactions. The binding specificity of plant lectins to E. coli and S. aureus cells was studied, and wheat germ agglutinin, which provided high-affinity interactions, was selected as a receptor. Using this method, bacterial pathogens can be detected in concentrations of up to 106 cells/mL within 5 min. Their accessibility and universality make lectin reagents a promising tool to control a wide range of bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasian F, Ghafar-Zadeh E, Magierowski S (2018) Microbiological sensing technologies: a review. Bioengineering (Basel) 5:20

    Article  CAS  Google Scholar 

  • Alvarez-Barrientos A, Arroyo J, Canton R, Nombela C, Sanchez-Perez M (2000) Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev 13:167–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bain R, Cronk R, Hossain R, Bonjour S, Onda K, Wright J et al (2014) Global assessment of exposure to faecal contamination through drinking water based on a systematic review. Trop Med Int Health 19:917–927

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks SA (2017) Lectin Histochemistry: Historical Perspectives, State of the Art, and the Future. In: Pellicciari C, Biggiogera M (eds) Histochemistry of single molecules. Methods in molecular biology, vol 1560. Humana Press, New York

    Google Scholar 

  • Buzatu DA, Moskal TJ, Williams AJ, Cooper WM, Mattes WB, Wilkes JG (2014) An integrated flow cytometry-based system for real-time, high sensitivity bacterial detection and identification. PLoS One 4:e94254

    Article  CAS  Google Scholar 

  • Dan X, Liu W, Ng TB (2016) Development and applications of lectins as biological tools in biomedical research. Med Res Rev 36:221–247

    Article  CAS  PubMed  Google Scholar 

  • Davey HM (2002) Flow cytometric techniques for the detection of microorganisms. Methods Cell Sci 24:91–97

    Article  CAS  PubMed  Google Scholar 

  • Dmitriev BA, Toukach FV, Holst O, Rietschel ET, Ehlers S (2004) Tertiary structure of Staphylococcus aureus cell wall murein. J Bacteriol 186:7141–7148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faria-Ramos I, Costa-de-Oliveira S, Barbosa J, Cardoso A, Santos-Antunes J, Rodrigues AG et al (2012) Detection of Legionella pneumophila on clinical samples and susceptibility assessment by flow cytometry. Eur J Clin Microbiol Infect Dis 31:3351–3357

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Lago L, Vallejo FJ, Trujillano I, Vizcaino N (2000) Fluorescent whole-cell hybridization with 16S rRNA-targeted oligonucleotide probes to identify Brucella spp. by flow cytometry. J Clin Microbiol 38:2768–2771

    CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Zhou L, He D, Wang K, Cao J (2011) Rapid and ultrasensitive E. coli O157:H7 quantitation by combination of ligand magnetic nanoparticles enrichment with fluorescent nanoparticles based two-color flow cytometry. Analyst 136:4183–4191

    Article  CAS  PubMed  Google Scholar 

  • Hendon-Dunn CL, Thomas SR, Taylor SC, Bacon J (2018) A flow cytometry method for assessing M. tuberculosis responses to antibiotics. Methods Mol Biol 1736:51–57

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson OD, Zherdev AV (2018) Analytical application of lectins. Crit Rev Anal Chem 48:279–292

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson OD, Smirnova NI, Zherdev AV, Gasparyan VK, Dzantiev BB (2017) Enzyme-linked lectinosorbent assay of Escherichia coli and Staphylococcus aureus. Appl Biochem Microbiol 53:107–113

    Article  CAS  Google Scholar 

  • Hirabayashi J (2014a) Lectin-based glycomics: how and when was the technology born? Methods Mol Biol 1200:225–242

    Article  CAS  PubMed  Google Scholar 

  • Hirabayashi EJ (2014b) Lectins, methods and protocols. Humana Press, New York

    Google Scholar 

  • Holm C, Jespersen L (2003) A flow-cytometric Gram-staining technique for milk-associated bacteria. Appl Environ Microbiol 69:2857–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holm C, Mathiasen T, Jespersen L (2004) A flow cytometric technique for quantification and differentiation of bacteria in bulk tank milk. J Appl Microbiol 97:935–941

    Article  CAS  PubMed  Google Scholar 

  • Holtje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy D, Wilkinson MG (2017) Application of flow cytometry to the detection of pathogenic bacteria. Curr Issues Mol Biol 23:21–38

    Article  PubMed  Google Scholar 

  • Law JW, Ab Mutalib NS, Chan KG, Lee LH (2014) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770

    PubMed  Google Scholar 

  • Levon K, Yu B (2003) Development of multivalent macromolecular ligands for enhanced detection of biological targets. Macromol Symp 201:111–118

    Article  CAS  Google Scholar 

  • McCarthy M, Culloty SC (2011) Optimization of two immunofluorescent antibodies for the detection of Escherichia coli using immunofluorescent microscopy and flow cytometry. Curr Mirobiol 62:402–408

    Article  CAS  Google Scholar 

  • Mudronova D (2015) Flow cytometry as an auxiliary tool for the selection of probiotic bacteria. Benef Microbes 6:727–734

    Article  CAS  PubMed  Google Scholar 

  • Nagata Y, Burger MM (1974) Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem 249:3116–3122

    CAS  PubMed  Google Scholar 

  • Richter SG, Elli D, Kim HK, Hendrickx APA, Sorg JA, Schneewind O et al (2013) Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria. Proc Nat Acad Sci 110:3531–3536

    Article  PubMed  Google Scholar 

  • Rüger M, Bensch G, Tüngler R, Reichl U (2012) A flow cytometric method for viability assessment of Staphylococcus aureus and Burkholderia cepacia in mixed culture. Cytometry A 81:1055–1066

    Article  PubMed  Google Scholar 

  • Rüger M, Ackermann M, Reichl U (2014) Species-specific viability analysis of Pseudomonas aeruginosa, Burkholderia cepacia and Staphylococcus aureus in mixed culture by flow cytometry. BMC Microbiol 14:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Seltman G, Holst O (2002) The bacterial cell wall. Springer, Berlin

    Book  Google Scholar 

  • Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791

    Article  PubMed  PubMed Central  Google Scholar 

  • Vouga M, Greub G (2016) Emerging bacterial pathogens: the past and beyond. Clin Microbiol Infect 22:12–21

    Article  PubMed  Google Scholar 

  • Xue Y, Wilkes JG, Moskal TJ, Williams AJ, Cooper WM, Buzatu DA (2017) Flow-cytometry-based method to detect Escherichia coli and Shigella spp. using 16S rRNA-based probe. Curr Protoc Toxicol 71:2251–2258

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Science Foundation (Grant 14-14-01131) with the exception of the microscopic studies of Mycobacterium that were supported by the Russian Foundation for Basic Research (Grant 17-04-00564_a). The authors are grateful to Dr. V.N. Kopyltsov (Federal Research and Clinical Center of Physical–Chemical Medicine, Moscow, Russia) for providing S. aureus cells and Dr. T.A. Yagudin (A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia) for providing E. coli TG1 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga D. Hendrickson.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Djamel Drider.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 63 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendrickson, O.D., Nikitushkin, V.D., Zherdev, A.V. et al. Lectin-based detection of Escherichia coli and Staphylococcus aureus by flow cytometry. Arch Microbiol 201, 313–324 (2019). https://doi.org/10.1007/s00203-018-1613-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-018-1613-0

Keywords

Navigation