Skip to main content
Log in

Performance evaluation of solar-combined boosting topology for EV battery charger using interval type-2 fuzzy controller

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper offers a unique and novel approach for electric vehicle battery charging by incorporating a solar PV-integrated dc to dc boost converter. Traditional power electronic converters used in such applications often face limitations including low voltage gain, low conversion efficiency, high ripple content, and inadequate controller performance. To overcome these challenges, the study introduces the Improved A-Source Boost Converter (IASBC) along with an interval type-2 fuzzy logic controller (IT2FLC) and MPPT technique for continuous switching with optimal design. The IASBC, equipped with a coupled inductor, enhances load side performance by achieving high conversion efficiency and voltage gain while minimizing the impact of network parasitic. Additionally, the proposed controller technique effectively reduces output side dc ripple content through gain parameter optimization. The system is optimized for charging a 48 V rechargeable battery within a solar photovoltaic voltage range of 25–75 V DC. Extensive simulations using MATLAB validate the efficacy of the proposed approach. The software analysis reveals an efficiency of 90.82% in the open-loop system and 98.57% in the closed-loop system, while the hardware system achieves an efficiency of approximately 98.55%. Furthermore, a 100 W experimental design is developed and compared with the simulation results, providing validation for the technical significance of the suggested converter. This novel approach not only addresses the limitations of conventional converters but also offers improved performance in terms of efficiency, voltage gain, and ripple content. The proposed system holds promise for efficient electric vehicle battery charging and can contribute to the advancement of sustainable energy solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. De oliveira-assis, et al (2021) optimal energy management system using biogeography based optimization for grid-connected mvdc microgrid with photovoltaic, hydrogen system, electric vehicles and z-source converters. Energy convers manag. https://doi.org/10.1016/j.enconman.2021.114808

    Article  Google Scholar 

  2. Gitau MN, Adam GP, Masike l, Mbukani MWK (2021) Unified approach for synthesis and analysis of non-isolated dc-dc converters. IEEE Access 9:120088–120109. https://doi.org/10.1109/access.2021.3108191

    Article  Google Scholar 

  3. Kumar KK, Kamaraja AS, Kumar PN, Vaz FAJ (2021) Design and development of closed loop pi controlled solar integrated modified a source dc to dc boosting topology for standalone battery charging system. In: proceedings of the 6th international conference on communication and electronics systems, ICCES 2021, pp. 117–122, https://doi.org/10.1109/icces51350.2021.9488941.

  4. Carvalho EL, Felipe CA, Bellinaso IV, Stein CMDO, Cardoso R, Michels I (2021) asymmetrical-pwm dab converter with extended zvs/zcs range and reduced circulating current for ess applications. IEEE Trans Power Electron 36(11):12990–13001. https://doi.org/10.1109/tpel.2021.3078734

    Article  Google Scholar 

  5. Joisher M, Singh D, Taheri S, Espinoza-trejo DR, Pouresmaeil E, Taheri H (2020) A hybrid evolutionary-based mppt for photovoltaic systems under partial shading conditions. IEEE Access 8:38481–38492. https://doi.org/10.1109/access.2020.2975742

    Article  Google Scholar 

  6. Gu X, Wang X, Liu Z, Zha W, Xu X, Zheng M (2020) a multi-objective optimization model using improved nsga-ii for optimizing metal mines production process. IEEE Access 8:28847–28858. https://doi.org/10.1109/access.2020.2972018

    Article  Google Scholar 

  7. Abdel-Rahim O (2020) A new high gain dc-dc converter with model-predictive-control based mppt technique for photovoltaic systems. CPSS Trans Power Electron Appl 5(2):191–200. https://doi.org/10.24295/cpsstpea.2020.00016

    Article  Google Scholar 

  8. Su M et al (2021) a natural bidirectional isolated single-phase ac/dc converter with wide output voltage range for aging test application in electric vehicle. IEEE J Emerg Sel Top Power Electron 9(3):3489–3500. https://doi.org/10.1109/jestpe.2020.3010860

    Article  Google Scholar 

  9. Lachichi A, Junyent-ferre A, Green TC (2019) comparative optimization design of a modular multilevel converter tapping cells and a 2l-vsc for hybrid lv ac/dc microgrids. IEEE Trans Ind Appl 55(3):3228–3240. https://doi.org/10.1109/tia.2019.2897263

    Article  Google Scholar 

  10. Spro OC et al (2020) Optimized design of multi-mhz frequency isolated auxiliary power supply for gate drivers in medium-voltage converters”. IEEE Trans Power Electron 35(9):9496–9511. https://doi.org/10.1109/tpel.2020.2972977

    Article  Google Scholar 

  11. Kumar KV, Reddivari R, Jena D (2019) a comparative study of different capacitor voltage control design strategies for z-source inverter. IETE J Res. https://doi.org/10.1080/03772063.2019.1650669

    Article  Google Scholar 

  12. Siwakoti YP, Blaabjerg F, Galigekere VP, Ayachit A, Kazimierczuk MK (2016) A-source impedance network. IEEE Trans Power Electron 31(12):8081–8087. https://doi.org/10.1109/tpel.2016.2579659

    Article  Google Scholar 

  13. Divakar A, Jacob J (2019) Genetic algorithm based tuning of nonfragile and robust pi controller for psfb dc-dc converter. In: Proceedings of the 4th international conference on communication and electronics systems, ICCES 2019, https://doi.org/10.1109/icces45898.2019.9002210.

  14. Banerjee S, Ghosh A, Rana N (2017) An improved interleaved boost converter with pso-based optimal type-iii controller. IEEE J Emerg Sel Top Power Electron 5(1):323–337. https://doi.org/10.1109/jestpe.2016.2608504

    Article  Google Scholar 

  15. Augustilindiya S, Palani S, Vijayarekha K, Breethiyeltsina M (2013) Hardware implementation of evolutionary algorithm assisted digital pid controllers for dc-dc converters. Int J Eng Technol 5(4):3413–3418

    Google Scholar 

  16. Alam KS, Xiao D, Zhang D, Rahman MF (2019) Single-phase multicell ac-dc converter with optimized controller and passive filter parameters. IEEE Trans Ind Electron 66(1):297–306. https://doi.org/10.1109/tie.2018.2829674

    Article  Google Scholar 

  17. Sundareswaran K, Devi V, Sankar S, Nayak PSR, Peddapati S (2014) Feedback controller design for a boost converter through evolutionary algorithms. IET Power Electron 7(4):903–913. https://doi.org/10.1049/iet-pel.2013.0266

    Article  Google Scholar 

  18. Mohamed AAS, Berzoy A, Mohammed OA (2017) Design and hardware implementation of fl-mppt control of pv systems based on Ga and small-signal analysis. IEEE Trans Sustain Energy 8(1):279–290. https://doi.org/10.1109/tste.2016.2598240

    Article  Google Scholar 

  19. Choi Y, Jung B (2007) Parameter tuning for buck converters using genetic 2 system configuration of the buck converter. pp. 641–647

  20. Veerachary M, Saxena AR (2015) Optimized power stage design of low source current ripple fourth-order boost dc-dc converter: a pso approach. IEEE Trans Ind Electron 62(3):1491–1502. https://doi.org/10.1109/tie.2014.2361316

    Article  Google Scholar 

  21. Ibrahim MN, Rezk H, Al-dhaifallah M, Sergeant P (2019) Solar array fed synchronous reluctance motor driven water pump: an improved performance under partial shading conditions. IEEE access 7:77100–77115. https://doi.org/10.1109/access.2019.2922358

    Article  Google Scholar 

  22. Silva-romero JJ, Tellez-anguiano ADC, Anzurez-marin J, Escobar-jimenez RF, Heras-cervantes M (2021) Fuzzy fdi system for flyback converters. IEEE Trans Fuzzy Syst 29(10):2859–2868. https://doi.org/10.1109/tfuzz.2020.3007432

    Article  Google Scholar 

  23. Mani P, Joo YH (2022) Fuzzy event-triggered control for back-to-back converter involved pmsg-based wind turbine systems. IEEE Trans Fuzzy Syst 30(5):1409–1420. https://doi.org/10.1109/tfuzz.2021.3059949

    Article  Google Scholar 

  24. Wang J, Luo W, Liu J, Wu I (2021) Adaptive type-2 fnn-based dynamic sliding mode control of dc-dc boost converters. IEEE Trans Syst Man Cybern Syst 51(4):2246–2257. https://doi.org/10.1109/tsmc.2019.2911721

    Article  Google Scholar 

  25. Lin H et al (2022) Fuzzy logic system-based sliding-mode control for three-level npc converters. IEEE Trans Transp Electrif 8(3):3307–3319. https://doi.org/10.1109/tte.2021.3134279

    Article  Google Scholar 

  26. Sutikno T, Subrata AC, Elkhateb A (2021) Evaluation of fuzzy membership function effects for maximum power point tracking technique of photovoltaic system. IEEE access 9:109157–109165. https://doi.org/10.1109/access.2021.3102050

    Article  Google Scholar 

  27. Petrovic DJ, Lazic MM, Jovanoviclazic BV, Blanusa BD, Aleksic SO (2022) Hybrid power supply system with fuzzy logic controller: power control algorithm, main properties, and applications. J Modern Power Syst Clean Energy 10(4):923–931. https://doi.org/10.35833/mpce.2020.000069

    Article  Google Scholar 

  28. Liu X, Qiu I, Fang Y, Wang K, Li Y, Rodriguez J (2022) A fuzzy approximation for fcs-mpc in power converters. IEEE Trans Power Electron 37(8):9153–9163. https://doi.org/10.1109/tpel.2022.3157847

    Article  Google Scholar 

  29. Chen CL (2022) Many-objective adaptive fuzzy with sliding mode control for a class of switching power converters using global optimization. IEEE Access 10:10317–10332. https://doi.org/10.1109/access.2022.3144836

    Article  Google Scholar 

  30. Babes B, Albalawi F, Hamouda N, Kahla S, Ghoneim SSM (2021) Fractional-fuzzy pid control approach of photovoltaic-wire feeder system (pv-wfs): simulation and hil-based experimental investigation. IEEE Access 9:159933–159954. https://doi.org/10.1109/access.2021.3129608

    Article  Google Scholar 

  31. Long B, Lu PJ, Chong KT, Rodriguez J, Guerrero J (2022) Robust fuzzy-fractional-order nonsingular terminal sliding-mode control of lcl-type grid-connected converters. IEEE Trans Ind Electron 69(6):5854–5866. https://doi.org/10.1109/tie.2021.3094411

    Article  Google Scholar 

  32. Balasundar C, Sundarabalan CK, Srinath NS, Sharma J, Guerrero JM (2021) Interval type2 fuzzy logic-based power sharing strategy for hybrid energy storage system in solar powered charging station. IEEE Trans Veh Technol 70(12):12450–12461. https://doi.org/10.1109/tvt.2021.3122251

    Article  Google Scholar 

  33. Aguila-leon J, Chiñas-palacios C, Vargas-salgado C, Hurtado-perez E, Garcia EXM (2021) particle swarm optimization, genetic algorithm and grey wolf optimizer algorithms performance comparative for a dc-dc boost converter pid controller. Adv Sci Technol Eng Syst 6(1):619–625. https://doi.org/10.25046/aj060167

    Article  Google Scholar 

  34. Rajamani MPE, Rajesh R, Willjuice Iruthayarajan M (2021) Design and experimental validation of pid controller for buck converter: a multi-objective evolutionary algorithms based approach. https://doi.org/10.1080/03772063.2021.1905564,.

  35. Anitha P, Kumar KK, Ravindran M, Saravanaselvan A (2022) evolutionary algorithm based z-source dc-dc boost converter for charging ev battery. Intell Autom Soft Comput 34(2):1377–1397. https://doi.org/10.32604/iasc.2022.025396

    Article  Google Scholar 

  36. Nathan K, Ghosh S, Siwakoti Y, Long T (2019) A new dc-dc converter for photovoltaic systems: coupled-inductors combined cuk-sepic converter. IEEE Trans Energy Convers 34(1):191–201. https://doi.org/10.1109/tec.2018.2876454

    Article  Google Scholar 

  37. Tey KS, Mekhilef S, Seyedmahmoudian M, Horan B, Oo AT, Stojcevski A (2018) Improved differential evolution-based mppt algorithm using sepic for pv systems under partial shading conditions and load variation. IEEE Trans Industr Inform 14(10):4322–4333. https://doi.org/10.1109/tii.2018.2793210

    Article  Google Scholar 

  38. Tran DD, Chakraborty S, Lan Y, El Baghdadi M, Hegazy O (2020) nsga-ii-based codesign optimization for power conversion and controller stages of interleaved boost converters in electric vehicle drivetrains. Energies (basel). https://doi.org/10.3390/en13195167

    Article  Google Scholar 

  39. Komathi C, Umamaheswari MG (2019) Analysis and design of genetic algorithm-based cascade control strategy for improving the dynamic performance of interleaved dc–dc sepic pfc converter. Neural Comput Appl 32(9):5033–5047. https://doi.org/10.1007/s00521-018-3944-9

    Article  Google Scholar 

  40. Stala R, Waradzyn Z, Folmer S (2022) Input current ripple reduction in a step-up dc-dc switched-capacitor switched-inductor converter. IEEE Access 10:19890–19904. https://doi.org/10.1109/access.2022.3152543

    Article  Google Scholar 

  41. Valdez-reséndiz JE, Claudio-sánchez A, Rosas-caro JC, Guerrero-ramírez GV, Mayo-maldonado JC, Tapia-hernández A (2016) Resonant switched capacitor voltage multiplier with interleaving capability. Electric Power Syst Res 133:365–372. https://doi.org/10.1016/j.epsr.2015.12.037

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

CS and ASK contributed to conceptualization, writing—original draft preparation, investigation, methodology, and software. KKK contributed to project administration, formal analysis, resources, and supervision; KKK and AB contributed to data curation, validation, and writing—reviewing and editing.

Corresponding author

Correspondence to C. Senthil Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, C.S., Kamaraja, A.S., Kumar, K.K. et al. Performance evaluation of solar-combined boosting topology for EV battery charger using interval type-2 fuzzy controller. Electr Eng 106, 2325–2345 (2024). https://doi.org/10.1007/s00202-023-02073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-02073-1

Keywords

Navigation