Skip to main content

Advertisement

Log in

Classification of distribution power grid structures using inception v3 deep neural network

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

To maintain the supply of electrical energy, it is necessary that failures in the distribution grid are identified during inspections of the electrical power system before shutdowns occur. To automate the inspections, artificial intelligence techniques based on computer vision are proposed. Due to the low number of visible faults, it is difficult to train deep learning models based on images of electrical power system inspections. In this paper, it is proposed to use segmentation and edge detection techniques to increase the database, making classification possible using the Inception v3 deep neural network model. From a pre-processing using the Gaussian filter to smooth the image, the techniques of the threshold with binarization, adaptive binarization, and Otsu and riddler-calvard are used for segmentation; and for edge detection, the sobel and canny techniques are used. The Inception v3 had better results than VGG-16 and ResNet50, considering mean squared error, root mean square error, accuracy, precision, recall, F-measure, and speed to convergence in this application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://github.com/ElectricalPowerGrid/InspectionDataSet.

References

  1. Yang L, Fan J, Liu Y, Li E, Peng J, Liang Z (2020) A review on state-of-the-art power line inspection techniques. IEEE Trans Instrum Meas 69(12):9350–9365. https://doi.org/10.1109/TIM.2020.3031194

    Article  Google Scholar 

  2. Reza Ahmadi-Veshki M, Mirzaie M, Sobhani R (2020) Reliability assessment of aged sir insulators under humidity and pollution conditions. Int J Electr Power Energy Syst 117:105679. https://doi.org/10.1016/j.ijepes.2019.105679

    Article  Google Scholar 

  3. Stefenon SF, Ribeiro MHDM, Nied A, Mariani VC, Coelho LDS, Leithardt VRQ, Silva LA, Seman LO (2021) Hybrid wavelet stacking ensemble model for insulators contamination forecasting. IEEE Access 9:66387–66397. https://doi.org/10.1109/ACCESS.2021.3076410

    Article  Google Scholar 

  4. Liu Y, Zong H, Gao S, Du BX (2020) Contamination deposition and discharge characteristics of outdoor insulators in fog-haze conditions. Int J Electr Power Energy Syst 121:106176. https://doi.org/10.1016/j.ijepes.2020.106176

    Article  Google Scholar 

  5. Mussina D, Irmanova A, Jamwal PK, Bagheri M (2020) Multi-modal data fusion using deep neural network for condition monitoring of high voltage insulator. IEEE Access 8:184486–184496. https://doi.org/10.1109/ACCESS.2020.3027825

    Article  Google Scholar 

  6. Medeiros A, Sartori A, Stefenon SF, Meyer LH, Nied A (2021) Comparison of artificial intelligence techniques to failure prediction in contaminated insulators based on leakage current. J Intell Fuzzy Syst 4:3285–3298. https://doi.org/10.3233/JIFS-211126

    Article  Google Scholar 

  7. Qiao X, Zhang Z, Sundararajan R, Jiang X, Hu J, Fang Z (2021) The failure arc paths of the novel device combining an arrester and an insulator under different pollution levels. Int J Electr Power Energy Syst 125:106549. https://doi.org/10.1016/j.ijepes.2020.106549

    Article  Google Scholar 

  8. Rocha PHV, Costa EG, Serres AR, Xavier GVR, Peixoto JEB, Lins RL (2019) Inspection in overhead insulators through the analysis of the irradiated RF spectrum. Int J Electr Power Energy Syst 113:355–361. https://doi.org/10.1016/j.ijepes.2019.05.060

    Article  Google Scholar 

  9. Miao X, Liu X, Chen J, Zhuang S, Fan J, Jiang H (2019) Insulator detection in aerial images for transmission line inspection using single shot multibox detector. IEEE Access 7:9945–9956. https://doi.org/10.1109/ACCESS.2019.2891123

    Article  Google Scholar 

  10. Sampedro C, Rodriguez-Vazquez J, Rodriguez-Ramos A, Carrio A, Campoy P (2019) Deep learning-based system for automatic recognition and diagnosis of electrical insulator strings. IEEE Access 7:101283–101308. https://doi.org/10.1109/ACCESS.2019.2931144

    Article  Google Scholar 

  11. Shi C, Huang Y (2021) Cap-count guided weakly supervised insulator cap missing detection in aerial images. IEEE Sens J 21(1):685–691. https://doi.org/10.1109/JSEN.2020.3012780

    Article  Google Scholar 

  12. Prates RM, Cruz R, Marotta AP, Ramos RP, Simas Filho EF, Cardoso JS (2019) Insulator visual non-conformity detection in overhead power distribution lines using deep learning. Comput Electr Eng 78:343–355. https://doi.org/10.1016/j.compeleceng.2019.08.001

    Article  Google Scholar 

  13. Zhao Z, Zhen Z, Zhang L, Qi Y, Kong Y, Zhang K (2019) Insulator detection method in inspection image based on improved faster r-CNN. Energies 12(7):1204. https://doi.org/10.3390/en12071204

    Article  Google Scholar 

  14. Wu Q, An J (2014) An active contour model based on texture distribution for extracting inhomogeneous insulators from aerial images. IEEE Trans Geosci Remote Sens 52(6):3613–3626. https://doi.org/10.1109/TGRS.2013.2274101

    Article  Google Scholar 

  15. Stefenon SF, Corso MP, Nied A, Perez FL, Yow K-C, Gonzalez GV, Leithardt VRQ (2021) Classification of insulators using neural network based on computer vision. IET Gener, Transm Distrib 16(6):1096–1107. https://doi.org/10.1049/gtd2.12353

    Article  Google Scholar 

  16. Kang G, Gao S, Yu L, Zhang D (2019) Deep architecture for high-speed railway insulator surface defect detection: denoising autoencoder with multitask learning. IEEE Trans Instrum Meas 68(8):2679–2690. https://doi.org/10.1109/TIM.2018.2868490

    Article  Google Scholar 

  17. Ibrahim A, Dalbah A, Abualsaud A, Tariq U, El-Hag A (2020) Application of machine learning to evaluate insulator surface erosion. IEEE Trans Instrum Meas 69(2):314–316. https://doi.org/10.1109/TIM.2019.2956300

    Article  Google Scholar 

  18. Zhang D, Gao S, Yu L, Kang G, Wei X, Zhan D (2021) Defgan: defect detection gans with latent space pitting for high-speed railway insulator. IEEE Trans Instrum Meas 70:1–10. https://doi.org/10.1109/TIM.2020.3038008

    Article  Google Scholar 

  19. Tao X, Zhang D, Wang Z, Liu X, Zhang H, Xu D (2020) Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Trans Syst, Man, Cybern: Syst 50(4):1486–1498. https://doi.org/10.1109/TSMC.2018.2871750

    Article  Google Scholar 

  20. Wang S, Liu Y, Qing Y, Wang C, Lan T, Yao R (2020) Detection of insulator defects with improved resnest and region proposal network. IEEE Access 8:184841–184850. https://doi.org/10.1109/ACCESS.2020.3029857

    Article  Google Scholar 

  21. Cui L, Ramesh M (2020) Prediction of flashover voltage using electric field measurement on clean and polluted insulators. Int J Electr Power Energy Syst 116:105574. https://doi.org/10.1016/j.ijepes.2019.105574

    Article  Google Scholar 

  22. Stefenon SF, Singh G, Yow K-C, Cimatti A (2022) Semi-protopnet deep neural network for the classification of defective power grid distribution structures. Sensors 22(13):4859. https://doi.org/10.3390/s22134859

    Article  Google Scholar 

  23. Corso MP, Perez FL, Stefenon SF, Yow K-C, García Ovejero R, Leithardt VRQ (2021) Classification of contaminated insulators using k-nearest neighbors based on computer vision. Computers 10(9):112. https://doi.org/10.3390/computers10090112

    Article  Google Scholar 

  24. Salem AA, Abd-Rahman R, Al-Gailani SA, Kamarudin MS, Ahmad H, Salam Z (2020) The leakage current components as a diagnostic tool to estimate contamination level on high voltage insulators. IEEE Access 8:92514–92528. https://doi.org/10.1109/ACCESS.2020.2993630

    Article  Google Scholar 

  25. Dadashizadeh Samakosh J, Mirzaie M (2019) Investigation and analysis of AC flashover voltage of sir insulators under longitudinal and fan-shaped non-uniform pollutions. Int J Electr Power Energy Syst 108:382–391. https://doi.org/10.1016/j.ijepes.2019.01.028

    Article  Google Scholar 

  26. Mohammadi Savadkoohi E, Mirzaie M, Seyyedbarzegar S, Mohammadi M, Khodsuz M, Ghorbani Pashakolae M, Biazar Ghadikolaei M (2020) Experimental investigation on composite insulators AC flashover performance with fan-shaped non-uniform pollution under electro-thermal stress. Int J Electr Power Energy Syst 121:106142. https://doi.org/10.1016/j.ijepes.2020.106142

    Article  Google Scholar 

  27. Cao B, Wang L, Yin F (2019) A low-cost evaluation and correction method for the soluble salt components of the insulator contamination layer. IEEE Sens J 19(13):5266–5273. https://doi.org/10.1109/JSEN.2019.2902192

    Article  Google Scholar 

  28. Stefenon SF, Seman LO, Sopelsa Neto NF, Meyer LH, Nied A, Yow KC (2022) Echo state network applied for classification of medium voltage insulators. Int J Electr Power Energy Syst 134:107336. https://doi.org/10.1016/j.ijepes.2021.107336

    Article  Google Scholar 

  29. Stefenon SF, Neto CSF, Coelho TS, Nied A, Yamaguchi CK, Yow K-C (2022) Particle swarm optimization for design of insulators of distribution power system based on finite element method. Electr Eng 104:615–622. https://doi.org/10.1007/s00202-021-01332-3

    Article  Google Scholar 

  30. Salem AA, Abd-Rahman R, Rahiman W, Al-Gailani SA, Al-Ameri SM, Ishak MT, Sheikh UU (2021) Pollution flashover under different contamination profiles on high voltage insulator: Numerical and experiment investigation. IEEE Access 9:37800–37812. https://doi.org/10.1109/ACCESS.2021.3063201

    Article  Google Scholar 

  31. Sopelsa Neto NF, Stefenon SF, Meyer LH, Ovejero RG, Leithardt VRQ (2022) Fault prediction based on leakage current in contaminated insulators using enhanced time series forecasting models. Sensors 22(16):6121. https://doi.org/10.3390/s22166121

    Article  Google Scholar 

  32. Sopelsa Neto NF, Stefenon SF, Meyer LH, Bruns R, Nied A, Seman LO, Gonzalez GV, Leithardt VRQ, Yow K-C (2021) A study of multilayer perceptron networks applied to classification of ceramic insulators using ultrasound. Appl Sci 11(4):1592. https://doi.org/10.3390/app11041592

    Article  Google Scholar 

  33. Yuan Z, Ye Q, Wang Y, Guo Z (2021) State recognition of surface discharges by visible images and machine learning. IEEE Trans Instrum Meas 70:1–11. https://doi.org/10.1109/TIM.2020.3031543

    Article  Google Scholar 

  34. Stefenon SF, Bruns R, Sartori A, Meyer LH, Ovejero RG, Leithardt VRQ (2022) Analysis of the ultrasonic signal in polymeric contaminated insulators through ensemble learning methods. IEEE Access 10:33980–33991. https://doi.org/10.1109/ACCESS.2022.3161506

    Article  Google Scholar 

  35. Kim S, Kim D, Jeong S, Ham J-W, Lee J-K, Oh K-Y (2020) Fault diagnosis of power transmission lines using a UAV-mounted smart inspection system. IEEE Access 8:149999–150009. https://doi.org/10.1109/ACCESS.2020.3016213

    Article  Google Scholar 

  36. Guo Z, Ye Q, Wang Y, Han M (2020) Study of the development of negative dc corona discharges on the basis of visible digital images. IEEE Trans Plasma Sci 48(7):2509–2514. https://doi.org/10.1109/TPS.2020.3000921

    Article  Google Scholar 

  37. Dong Y, Zhang Q (2019) A combined deep learning model for the scene classification of high-resolution remote sensing image. IEEE Geosci Remote Sens Lett 16(10):1540–1544. https://doi.org/10.1109/LGRS.2019.2902675

    Article  Google Scholar 

  38. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), Boston, USA, pp 1–9 . https://doi.org/10.1109/CVPR.2015.7298594

  39. Jahandad Sam S.M., Kamardin K, Amir Sjarif NN, Mohamed N (2019) Offline signature verification using deep learning convolutional neural network (CNN) architectures Googlenet inception-v1 and inception-v3. Procedia Comput Sci 161:475–483. https://doi.org/10.1016/j.procs.2019.11.147

    Article  Google Scholar 

  40. Wang C, Chen D, Hao L, Liu X, Zeng Y, Chen J, Zhang G (2019) Pulmonary image classification based on inception-v3 transfer learning model. IEEE Access 7:146533–146541. https://doi.org/10.1109/ACCESS.2019.2946000

    Article  Google Scholar 

  41. Stefenon SF, Freire RZ, Meyer LH, Corso MP, Sartori A, Nied A, Klaar ACR, Yow K-C (2020) Fault detection in insulators based on ultrasonic signal processing using a hybrid deep learning technique. IET Sci, Meas Technol 14(10):953–961. https://doi.org/10.1049/iet-smt.2020.0083

    Article  Google Scholar 

  42. Dong N, Zhao L, Wu CH, Chang JF (2020) Inception v3 based cervical cell classification combined with artificially extracted features. Appl Soft Comput 93:106311. https://doi.org/10.1016/j.asoc.2020.106311

    Article  Google Scholar 

  43. Chen Q, Sun Q-S, Ann Heng P, Xia D-S (2008) A double-threshold image binarization method based on edge detector. Pattern Recogn 41(4):1254–1267. https://doi.org/10.1016/j.patcog.2007.09.007

    Article  Google Scholar 

  44. Gatos B, Pratikakis I, Perantonis SJ (2004) An adaptive binarization technique for low quality historical documents. In: Marinai S, Dengel AR (eds) Document analysis systems, vol VI, pp 102–113. Springer, Berlin. https://doi.org/10.1007/978-3-540-28640-0_10

  45. DaPonte J, Sadowski T, Broadbridge CC, Day D, Lehman A, Krishna D, Marinella L, Munhutu P, Sawicki M (2007) Comparison of thresholding techniques on nanoparticle images. In: Rahman Z-U, Reichenbach SE, Neifeld MA (eds) Visual information processing XVI, vol 6575, pp 149–158. SPIE, Orlando. https://doi.org/10.1117/12.714998. International Society for Optics and Photonics

  46. Gao W, Zhang X, Yang L, Liu H (2010) An improved sobel edge detection. In: 2010 3rd international conference on computer science and information technology, Chengdu, China, vol 5, pp 67–71 . https://doi.org/10.1109/ICCSIT.2010.5563693

  47. Ding L, Goshtasby A (2001) On the canny edge detector. Pattern Recogn 34(3):721–725. https://doi.org/10.1016/S0031-3203(00)00023-6

    Article  MATH  Google Scholar 

  48. Solís-Pérez JE, Gómez-Aguilar JF, Escobar-Jiménez RF, Reyes-Reyes J (2019) Blood vessel detection based on fractional hessian matrix with non-singular Mittag–Leffler Gaussian kernel. Biomed Signal Process Control 54:101584. https://doi.org/10.1016/j.bspc.2019.101584

    Article  Google Scholar 

  49. Blayvas I, Bruckstein A, Kimmel R (2006) Efficient computation of adaptive threshold surfaces for image binarization. Pattern Recogn 39(1):89–101. https://doi.org/10.1016/j.patcog.2005.08.011

    Article  Google Scholar 

  50. Jia F, Shi C, He K, Wang C, Xiao B (2018) Degraded document image binarization using structural symmetry of strokes. Pattern Recogn 74:225–240. https://doi.org/10.1016/j.patcog.2017.09.032

    Article  Google Scholar 

  51. Zhang Y, Gu N, Zhang X, Lin C (2020) Tire x-ray image defects detection based on adaptive thresholding method. In: Parallel architectures, algorithms and programming, vol 1163, pp 118–129. Springer, Singapore . https://doi.org/10.1007/978-981-15-2767-8_11

  52. Farrahi Moghaddam R, Cheriet M (2010) A multi-scale framework for adaptive binarization of degraded document images. Pattern Recogn 43(6):2186–2198. https://doi.org/10.1016/j.patcog.2009.12.024

    Article  MATH  Google Scholar 

  53. Suleyman E, Hamdulla A, Tuerxun P, Moydin K (2021) An adaptive threshold algorithm for offline Uyghur handwritten text line segmentation. Wirel Netw 27:3483–3495. https://doi.org/10.1007/s11276-019-02221-1

    Article  Google Scholar 

  54. Liu Z, Yang C, Huang J, Liu S, Zhuo Y, Lu X (2021) Deep learning framework based on integration of s-mask r-CNN and inception-v3 for ultrasound image-aided diagnosis of prostate cancer. Futur Gener Comput Syst 114:358–367. https://doi.org/10.1016/j.future.2020.08.015

    Article  Google Scholar 

  55. Xu Q, Varadarajan S, Chakrabarti C, Karam LJ (2014) A distributed canny edge detector: algorithm and FPGA implementation. IEEE Trans Image Process 23(7):2944–2960. https://doi.org/10.1109/TIP.2014.2311656

    Article  MathSciNet  MATH  Google Scholar 

  56. Ho Y, Wookey S (2020) The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 8:4806–4813. https://doi.org/10.1109/ACCESS.2019.2962617

    Article  Google Scholar 

  57. Xiang M, Yu J, Yang Z, Yang Y, Yu H, He H (2020) Probabilistic power flow with topology changes based on deep neural network. Int J Electr Power Energy Syst 117:105650. https://doi.org/10.1016/j.ijepes.2019.105650

    Article  Google Scholar 

  58. Kasburg C, Stefenon SF (2019) Deep learning for photovoltaic generation forecast in active solar trackers. IEEE Lat Am Trans 17(12):2013–2019. https://doi.org/10.1109/TLA.2019.9011546

    Article  Google Scholar 

  59. Huynh NA, Ng WK, Ariyapala K (2018) Learning under concept drift with follow the regularized leader and adaptive decaying proximal. Expert Syst Appl 96:49–63. https://doi.org/10.1016/j.eswa.2017.11.042

    Article  Google Scholar 

  60. Zang H, Cheng L, Ding T, Cheung KW, Wei Z, Sun G (2020) Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning. Int J Electr Power Energy Syst 118:105790. https://doi.org/10.1016/j.ijepes.2019.105790

    Article  Google Scholar 

  61. Wang S, Wang X, Wang S, Wang D (2019) Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting. Int J Electr Power Energy Syst 109:470–479. https://doi.org/10.1016/j.ijepes.2019.02.022

  62. Sideratos G, Hatziargyriou ND (2020) A distributed memory RBF-based model for variable generation forecasting. Int J Electr Power Energy Syst 120:106041. https://doi.org/10.1016/j.ijepes.2020.106041

    Article  Google Scholar 

  63. Theckedath D, Sedamkar R (2020) Detecting affect states using vgg16, resnet50 and se-resnet50 networks. SN Comput Sci 1(79):1–7. https://doi.org/10.1007/s42979-020-0114-9

    Article  Google Scholar 

  64. Ren J-H, Liu F (2019) Predicting software defects using self-organizing data mining. IEEE Access 7:122796–122810. https://doi.org/10.1109/ACCESS.2019.2927489

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference number DDG-2020-00034. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), numéro de référence DDG-2020-00034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Frizzo Stefenon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefenon, S.F., Yow, KC., Nied, A. et al. Classification of distribution power grid structures using inception v3 deep neural network. Electr Eng 104, 4557–4569 (2022). https://doi.org/10.1007/s00202-022-01641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01641-1

Keywords

Navigation