Skip to main content

Advertisement

Log in

Dynamic harmonics–interharmonics identification and compensation through optimal control of a power conditioning application

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes an online identification and compensation scheme for a distorted waveform’s harmonic and interharmonic content in electrical circuits. The proposed novel identification scheme allows the simultaneous estimation of the harmonic components’ frequency, amplitude, and phase. One of the main characteristics of the proposed online identification scheme is how the harmonics and interharmonics are estimated using a fast-convergent state estimator based on the state-space representation of the harmonic content. The proposed estimator has a decentralized approach that relies on efficient implementation, a relevant result for real-time feedback control applications, such as power conditioners control. The decentralized structure allows, if needed, selective harmonic suppression. The paper exposes a case study of identifying and suppressing the harmonic and interharmonic content produced by a three-phase load connected to the electrical power grid to demonstrate the proposed estimator’s efficiency. Hardware-in-the-loop and simulation results validate the identifier effectiveness to determine in real time the harmonic content and how it can be used to reduce the total harmonic distortion through a nonlinear optimal tracking control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Arrillaga J, Watson N (2004) Power systems harmonics. Wiley, Chichester

    Google Scholar 

  2. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems (1993) IEEE Std 519-1992

  3. I.E. Commission (1998) IEC 61000-3-2-electromagnetic compatibility (EMC)-part 3-2: limits-limits for harmonic current emissions

  4. Rasol Jannesar M, Sedighi A, Savaghebi M, Anvari-Mogjaddam A, Guerrero J (2019) Optimal probabilistic planning of passive harmonic filters in distribution networks with high penetration of photovoltaic generation. Electr Power Energy Syst 110:332–348

    Article  Google Scholar 

  5. Wang B, Shang J, Dai N, Chen H (2015) Harmonic reference currents balancing method for delta-connected static synchronous compensator. Electron Lett 51(25):2134–2136

    Article  Google Scholar 

  6. Williams SM, Hoft RG (1991) Adaptive frequency domain control of PWM switched power line conditioner. IEEE Trans Power Electron 6(4):665–670

    Article  Google Scholar 

  7. Yeetum W, Kinnares V (2019) Parallel active power filter based on source current detection for antiparallel resonance with robustness to parameter variations in power systems. IEEE Trans Ind Electron 66(2):876–886

    Article  Google Scholar 

  8. Yang K, Bollen MHJ, Larsson EOA (2015) Aggregation and amplification of wind-turbine harmonic emission in a wind park. IEEE Trans Power Deliv 30(2):791–799

    Article  Google Scholar 

  9. Khan A, Memon S, Sattar TP (2018) Analyzing integrated renewable energy and smart-grid systems to improve voltage quality and harmonic distortion losses at electric-vehicle charging stations. IEEE Access 6:26404–26415

    Article  Google Scholar 

  10. Hwang JK, Liu Y (2014) Noise analysis of power system frequency estimated from angle difference of discrete Fourier transform coefficient. IEEE Trans Power Deliv 29(4):1533–1541

    Article  Google Scholar 

  11. Tanaka T, Akagi H (1995) A new method of harmonic power detection based on the instantaneous active power in three-phase circuits. IEEE Trans Power Deliv 10(4):1737–1742

    Article  Google Scholar 

  12. Radulović M, Zečević Z, Krstajić B (2020) Dynamic phasor estimation by symmetric Taylor weighted least square filter. IEEE Trans Power Deliv 35(2):828–836

    Article  Google Scholar 

  13. Karimi-Ghartemani M, Khajehoddin SA, Jain PK, Bakhshai A, Mojiri M (2012) Addressing DC component in PLL and notch filter algorithms. IEEE Trans Power Electron 27(1):78–86

    Article  Google Scholar 

  14. Fedele G, Ferrise A (2014) A frequency-locked-loop filter for biased multi-sinusoidal estimation. IEEE Trans Signal Process 62(5):1125–1134

    Article  MathSciNet  Google Scholar 

  15. Chen B, Pin G, Ng WM, Li P, Parisini T, Hui S-YR (2018) Online detection of fundamental and interharmonics in ac mains for parallel operation of multiple grid-connected power converters. IEEE Trans Power Electron 33(11):9318–9330

    Article  Google Scholar 

  16. Hajimolahoseini H, Taban MR, Abutalebi HR (2008) Improvement of extended Kalman filter frequency tracker for nonstationary harmonic signals. In: 2008 international symposium on telecommunications, pp 592–597

  17. Carnevale D, Astolfi A (2011) A hybrid observer for frequency estimation of saturated multi-frequency signals. In: 2011 50th IEEE conference on decision and control and European control conference, pp 2577–2582

  18. Karimi-Ghartemani M, Ziarani AK (2004) A nonlinear time–frequency analysis method. IEEE Trans Signal Process 52(6):1585–1595

    Article  MathSciNet  Google Scholar 

  19. Mojiri M, Karimi-Ghartemani M, Bakhshai A (2010) Processing of harmonics and interharmonics using an adaptive notch filter. IEEE Trans Power Deliv 25(2):534–542

    Article  Google Scholar 

  20. Ornelas-Tellez F, Rico-Melgoza JJ, Morfin-Magana R, Ramos-Paz S (2019) Optimal dynamic harmonic extraction and suppression in power conditioning applications. IEEE Trans Ind Electron 1–12

  21. Chen Y, Fei J (2019) Dynamic sliding mode control of active power filter with integral switching gain. IEEE Access 7:21635–21644

    Article  Google Scholar 

  22. Rameshkunar K, Indragandhi V, Arunkumari T (2017) Model predictive current control of single phase shunt active power filter. Energy Procedia 117:658–665

    Article  Google Scholar 

  23. Madtharad C, Premrudeepreechacharn S (2002) Active power filter for three-phase four-wire electric systems using neural networks. Electric Power Syst Res 60:179–192

    Article  Google Scholar 

  24. Kirk D (2004) Optimal control theory an introduction. Dover, Upper Saddle River

    Google Scholar 

  25. Sepulchre R (1997) Constructive nonlinear control. Springer, London

    Book  Google Scholar 

  26. Freeman R (1996) Robust nonlinear control design: state-space and Lyapunov techniques. Birkhauser, Boston

    Book  Google Scholar 

  27. Anderson B, Moore J (1990) Optimal control: linear quadratic methods. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  28. Pahlevaninezhad M, Das P, Drobnik J, Moschopoulos G, Jain PK, Bakhshai A (2012) A nonlinear optimal control approach based on the control-Lyapunov function for an ac/dc converter used in electric vehicles. IEEE Trans Ind Inf 8(3):596–614

    Article  Google Scholar 

  29. Liu K, Lü J, Lin Z (2018) Design of distributed observers in the presence of arbitrarily large communication delays. IEEE Trans Neural Netw Learn Syst 29(9):4447–4461

    Article  Google Scholar 

  30. Grama A (2003) Introduction to parallel computing. Addison-Wesley, Harlow

    Google Scholar 

  31. Astrom KJ (2006) Introduction to stochastic control theory. Dover, Mineola

    MATH  Google Scholar 

  32. Tolstov GP (1962) Fourier series. Prentice Hall, Englewood Cliffs

    Google Scholar 

  33. Obregon-Pulido G, Castillo-Toledo B, Loukianov A (2002) A globally convergent estimator for n-frequencies. IEEE Trans Autom Control 47(5):857–863

    Article  MathSciNet  Google Scholar 

  34. Ghartemani M (2014) Enhanced phase-locked loop structures for power and energy applications. Wiley, Hoboken

    Book  Google Scholar 

  35. Cloutier JR (1997) State-dependent Riccati equation techniques: an overview. In: Proceedings of the 1997 American control conference (Cat. No.97CH36041), vol 2, pp 932–9362

  36. Cimen T (2010) Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method. Annu Rev Control 34(1):32–51

    Article  Google Scholar 

  37. Ornelas-Tellez F, Rico-Melgoza J, Espinosa-Juarez E, Sanchez E (2018) Robust control in dc microgrids. IEEE Trans Smart Grid 9(6):5543–5553

    Article  Google Scholar 

  38. Ravinder K, Bansal HO (2019) Investigations on shunt active power filter in a PV-wind-FC based hybrid renewable energy system to improve power quality using hardware-in-the-loop testing platform. Electric Power Syst Res 177:105957

    Article  Google Scholar 

  39. Tang C-Y, Chen Y-F, Chen Y-M, Chang Y-R (2015) DC-link voltage control strategy for three-phase back-to-back active power conditioners. IEEE Trans Ind Electron 62(10):6306–6316

    Article  Google Scholar 

  40. Akagi H (2007) Instantaneous power theory and applications to power conditioning. Wiley IEEE Press, Hoboken

    Book  Google Scholar 

  41. Jamshidi M (2014) Advance trends in soft computing: proceedings of WCSC 2013, December 16–18, San Antonio, Texas, USA. Springer, Cham

  42. Khalil HK (2002) Nonlinear systems. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serafin Ramos-Paz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Signal state-space representation

Table 1 Estimator gains for phase A

Consider the signal (4) rewritten as

$$\begin{aligned} s = A\cos {\theta } \bar{\omega }_{1}+A\sin {\theta }\bar{\omega }_{2} \end{aligned}$$
(A1)

where \(\bar{\omega }_{1}=\sin {\alpha t}\) and \(\bar{\omega }_{2}= \cos {\alpha t}\). Then, by taking the corresponding time derivative, it is possible to state that \(\dot{\bar{\omega }}_{1}= \alpha \bar{\omega }_{2}\) and \(\dot{\bar{\omega }}_{2}= -\alpha \bar{\omega }_{1}\). By proposing the change of variable \(\omega _{1}=\frac{\bar{\omega }}{\alpha }\) and \(\omega _{2}= \bar{\omega }_{2}\), the dynamics of (A1) becomes

$$\begin{aligned} \begin{aligned} \dot{\omega }_{1}&= \omega _{2}\\ \dot{\omega }_{2}&= -\alpha ^{2}\omega _{2}\\ s&= A\alpha \cos {\theta }\omega _{1}+A\sin {\theta }\omega _{2}. \end{aligned} \end{aligned}$$
(A2)

Introducing a parameter \(\lambda \) to scale the magnitude of the signal, and defining \(z_{1}= \lambda \omega _{1}\) and \(z_{2}= \omega _{2}\), one obtains

$$\begin{aligned} \begin{aligned} \dot{z}_{1}&= \lambda z_{2}\\ \dot{z}_{2}&= -\frac{\alpha ^{2}}{\lambda }z_{1}\\ \dot{z}_{3}&=0 \end{aligned} \end{aligned}$$
(A3)

where the new variable \(z_{3}\) is included to model the angular frequency, which is considered to be constant, with initial condition \(z_{3}(0)= \alpha ^{2}\). Finally, signal (A1) can be obtained from (A3) through the output

$$\begin{aligned} s = \frac{k_{1}}{\lambda }z_{1}+k_{2}z_{2} \end{aligned}$$
(A4)

where \(k_{1}=A \alpha \cos {\theta }\) and \(k_{2}= A \sin {\theta }\).

Estimator gains

Table 2 Estimator gains for phase B
Table 3 Estimator gains for phase C

1.1 B.1: Estimator parameter selection guidance

  • \(\lambda \) Weights the rising time, improving the tendency to the estimated variable.

  • \(\gamma \) Weights the convergence to the estimated frequency.

  • \(\xi \) A larger value improves the tendency to the estimated variable.

  • \(k_{1}\) Improves the tendency to the estimated variable. However, its value must be smaller than those selected for \(\lambda \) and \(\gamma \).

  • \(k_{2}\) Weights the amplitude of the oscillations in the estimate of the variable in a steady state.

Proof of Theorem 1

The estimator stability is based on the analysis of interconnected systems, as exposed in [42]. To this end, let us consider that the nth sub-system associated with the generation of the n-signal is described by

$$\begin{aligned} \begin{aligned} \dot{z}_{n1}&= \lambda _{n} z_{n2}\\ \dot{z}_{n2}&= -\frac{z_{n3}}{\lambda _{n}} z_{n1}\\ \dot{z}_{n3}&=0\\ s_{n}&= \frac{k_{n1}}{\lambda _{n}}z_{n1}+k_{n2} z_{n2}. \end{aligned} \end{aligned}$$
(C5)

Then, the corresponding state estimator structure for (C5) is defined as

$$\begin{aligned} \dot{\hat{z}}_{n1}= & {} \lambda _{n} \hat{z}_{n2}+\frac{\lambda _n}{k_{n2}} (s_n-\hat{s}_n) \nonumber \\ \dot{\hat{z}}_{n2}= & {} -\frac{\hat{z}_{n3}}{\lambda _{n}}\,\hat{z}_{n1}+\xi (s_n-\hat{s}_n)\nonumber \\ \dot{\hat{z}}_{n3}= & {} -\gamma _{n} \hat{z}_{n1} (s_n-\hat{s}_n) \nonumber \\ \hat{s}_n= & {} \frac{k_{n1}}{\lambda _{n}}\hat{z}_{n1}+k_{n2}\hat{z}_{n2}. \end{aligned}$$
(C6)

By defining the estimator error variables as \(e_{n1}=z_{n1}-\hat{z}_{n1}\), \(e_{n2}=z_{n2}-\hat{z}_{n2}\) and \(e_{n3}=z_{n3}-\hat{z}_{n3}\), thus \(e_n = [e_{n1}~~e_{n2}~~e_{n3}]^T\), then their corresponding time derivatives become

$$\begin{aligned}&\begin{aligned} \dot{e}_{n1}&= \lambda _{n}e_{n2}-\frac{\lambda _{n}}{k_{n2}}\left( \frac{k_{n1}}{\lambda _{n}}e_{n1}+ k_{n2}e_{n2} \right) \end{aligned} \end{aligned}$$
(C7)
$$\begin{aligned}&\begin{aligned} \dot{e}_{n2}&= -\left( \frac{z_{n3}}{\lambda _{n}}+\frac{\xi _{n}k_{n1}}{\lambda _{n}} \right) e_{n1}-\xi _{n}k_{n2}e_{n2}+\frac{z_{n3}}{\lambda _{n}}\hat{z}_{n1}\\&\quad -\frac{\hat{z}_{n1}e_{n3}}{\lambda _{n}}-\frac{z_{n3}}{\lambda _{n}}\hat{z}_{n1} \end{aligned} \end{aligned}$$
(C8)
$$\begin{aligned} \dot{e}_{n3}&= \dot{z}_{n3}+\gamma _{n}\hat{z}_{n1} \left( \frac{k_{n1}}{\lambda _{n1}}e_{n1}+k_{n2}e_{n2} \right) . \end{aligned}$$
(C9)

Therefore, the nth error dynamics becomes

$$\begin{aligned} \dot{e}_{n1}&=-\frac{k_{n1}}{k_{n2}}e_{n1} \end{aligned}$$
(C10a)
$$\begin{aligned} \dot{e}_{n2}&= -\frac{1}{\lambda _n}(\alpha _n+\xi _n k_{n1})e_{n1}-\xi _{n} k_{n2}e_{n2}-\frac{\hat{z}_{n1}}{\lambda _n}e_{n3} \end{aligned}$$
(C10b)
$$\begin{aligned} \dot{e}_{n3}&= \gamma _n \frac{k_{n1}}{\lambda _n}\hat{z}_{n1}e_{n1}+\gamma _n k_{n2}\hat{z}_{n1}e_{n2}. \end{aligned}$$
(C10c)

Consider the candidate Lyapunov function to establish the asymptotic stability to the origin of (C10), as

$$\begin{aligned} V_n(e_n)= \dfrac{1}{2}\Big (e_{n1}^2+\lambda _n^2\,k_{n2}\,e_{n2}^2+\dfrac{\lambda _n}{\gamma _n}e_{n3}^2\Big ). \end{aligned}$$
(C11)

From (C10a), with positive constants \(k_{n1}\) and \(k_{n2}\), it is immediate to see that \(\,e_{n1} \rightarrow 0\,\) as \(\,t \rightarrow \infty \,\), then by taking this fact in (C10b)–(C10c), the time derivative of (C11) becomes

$$\begin{aligned} \begin{aligned} \dot{V}_{n}(e_{n})&= -\frac{k_{n1}}{k_{n2}}e_{n1}^{2}+\lambda _{n}^{2}k_{n2}e_{n2}\left( -\xi _{n}k_{n2}e_{n2}-\frac{\hat{z}_{n1}}{\lambda _{n}}e_{n3} \right) \\&\quad +\frac{\gamma _{n}}{\lambda _{n}}e_{n3}\left( \gamma _{n}k_{n2}\hat{z}_{n1}e_{n2} \right) \\&= -\frac{k_{n1}}{k_{n2}}e_{n1}^{2}-\lambda _{n}^{2}k_{n2}^{2}\xi _{n}e_{n2}^{2}. \end{aligned} \end{aligned}$$
(C12)

Therefore, \(\dot{V}_n(e_n)\) is negative semidefinite, and by using the LaSalle’s theorem [42], function \(\dot{V}_n(e_n)=0\) for \(\,e_{n1} = 0\,\) and \(\,e_{n2} = 0\,\), consequently \(\dot{e}_{n2}=0\) and \(\dot{e}_{n2} = 0\), and from (C10b) one obtains \(0=-\dfrac{\hat{z}_{n1}}{\lambda _n}e_{n3}\), then the trivial solution \(e_{n3} = 0\) is fulfilled. Hence, the estimation error (C10) is asymptotically stable [42].

Recognize that (C10) can be rewritten as

$$\begin{aligned} \dot{e}_{n}&=\underbrace{\left[ \begin{array}{ccc} -\frac{k_{n1}}{k_{n2}}&{}0&{}0\\ -\frac{1}{\lambda _{n}}(z_{n3}+\xi _{n}k_{n1})&{}- \xi _{n}k_{n2}&{}-\frac{\hat{z}_{n1}}{\lambda _{n}}\\ \gamma _{n}\frac{k_{n1}}{\lambda _{n}}\hat{z}_{n1}&{}\gamma _{n}k_{n2}\hat{z}_{n1}&{}0 \end{array} \right] }_{\mathcal {A}_{1}(z_{n3},\hat{z}_{n1})} \left[ \begin{array}{c}e_{n1}\\ e_{n2}\\ e_{n3} \end{array} \right] \end{aligned}$$
(C13a)
$$\begin{aligned}&=\mathcal {A}_{n}(z_{n3},\hat{z}_{n1})e_{n}. \end{aligned}$$
(C13b)

Because the asymptotic stability of system (C10) has been demonstrated through (C11), it is assumed that there exists a positive definite Lyapunov function of the form \(V(e_{n})\) such that its time derivative can be represented as \(\dot{V}(e_{n})= -\eta _{n} \left\| e_{n}\right\| ^{2}\), where \(\eta _{n}\) becomes a stability degree [42], defining its amount of negativeness.

Then, the estimator stability analysis can be extended to the case when n signals (harmonics and interharmonics) are involved in a signal s(t). In this case, the interconnection terms appear in the analysis by considering that a signal \(s=\sum _{n=1}^N s_n=\sum _{n=1}^N \left( \frac{k_{n1}}{\lambda _{n}}z_{n1}+k_{n2} z_{n2}\right) \). Particularly, for the error \(e_1\) one obtains the interconnection described as

$$\begin{aligned} \begin{aligned} \dot{e}_{11}&= -\frac{k_{11}}{k_{12}}e_{11}+b_{11}e\\ \dot{e}_{12}&= -\frac{1}{\lambda _{1}}\left( z_{13}+\xi _{1}k_{11} \right) e_{11}-\xi _{1}k_{12}e_{12}-\frac{\hat{z}_{11}}{\lambda _{1}}e_{13}+b_{12}e\\ \dot{e}_{13}&= \gamma _{1}\frac{k_{11}}{\lambda _{1}}\hat{z}_{11}e_{11}+\gamma _{1}k_{12}\hat{z}_{11}e_{12}+b_{13}e. \end{aligned} \end{aligned}$$
(C14)

where

$$\begin{aligned} \begin{aligned} b_{11}&= \left[ 0,0,0,-\frac{\lambda _{1}}{\lambda _{2}}\frac{k_{22}}{k_{12}},0,\ldots , \frac{\lambda _{1}}{\lambda _{n}}\frac{k_{n1}}{k_{12}}, -\lambda _{1}\frac{k_{n1}}{k_{12}},0 \right] \\ b_{12}&= \left[ 0,0,0,-\xi _{1}\frac{k_{21}}{\lambda _{2}},-\xi k_{22},0,\ldots , -\xi _{1} \frac{k_{n1}}{\lambda _{n}}, -\xi _{1} k_{n2}, 0 \right] \\ b_{13}&= \Big [0,0,0,\gamma _{1}\hat{z}_{11}\frac{k_{21}}{\lambda _{2}}, \gamma _{1}\hat{z}_{11}k_{22},0,\ldots ,\\&\quad \gamma _{1}\hat{z}_{11}\frac{k_{n1}}{\lambda _{n}}, \gamma _{1}\hat{z}_{11}k_{n2},0 \Big ]. \end{aligned} \end{aligned}$$

Notice that system (C14) can be rewritten into a compact form as

$$\begin{aligned} \dot{e}_{1}=\mathcal {A}_{1}(z_{1},\hat{z}_{1})e_{1}+b_{1}e \end{aligned}$$
(C15)

where

$$\begin{aligned} \mathcal {A}_{1}(z_{1},\,\hat{z}_{1})&= \left[ \begin{array}{ccc} -\frac{k_{11}}{k_{12}}&{}0&{}0 \\ -\frac{1}{\lambda _{1}}\left( z_{13}+\xi _{1}k_{_{11}}\right) &{} -\xi _{1}k_{12} &{} -\frac{\hat{z}_{11}}{\lambda _{1}} \\ \gamma _{1}\frac{k_{11}}{\lambda _{1}}\hat{z}_{11}&{} \gamma _{1}k_{12}\hat{z}_{11} &{} 0 \end{array} \right] \\ b_1&=[b_{11} \,\,\,b_{12} \,\,\,b_{13}]^T \end{aligned}$$

with \(e_1=[e_{11} \,\,\,e_{12} \,\,\,e_{13}]^T\) and \(e=[e_{11} \,\,\,e_{12}\,\,\,e_{13}\,\,\,\ e_{21} \,\,\,e_{22}\,\,\,e_{23} \,\,\,\ldots \,\,\,\ e_{n1} \,\,\,e_{n2}\,\,\,e_{n3}]^T\). In a similar way, the error \(e_2\) can be analyzed, resulting in

$$\begin{aligned} \begin{aligned} \dot{e}_{21}&= -\frac{k_{21}}{k_{22}}e_{11}+b_{21}e \\ \dot{e}_{22}&=-\frac{1}{\lambda _{2}}(z_{23}+\xi _{2}k_{21})e_{21}-\xi _{2}k_{22}e_{22}-\frac{\hat{z}_{21}}{\lambda _{2}}e_{23}+b_{22}e \\ \dot{e}_{23}&=\gamma _{2}\frac{k_{21}}{\lambda _{2}}\hat{z}_{21}e_{21}+\gamma _{2}k_{22}\hat{z}_{21}e_{22}+b_{23}e. \\ \end{aligned} \end{aligned}$$
(C16)

where

$$\begin{aligned} \begin{aligned} b_{21}&= \Big [ -\frac{\lambda _{2}}{\lambda _{1}}\frac{k_{12}}{k_{22}},-\lambda _{2}\frac{k_{12}}{k_{22}},0,-\frac{\lambda _{1}}{\lambda _{2}}\frac{k_{21}}{k_{12}}, \lambda _{1}\frac{k_{22}}{k_{12}},0,\\&\quad \ldots ,-\frac{\lambda _{2}}{\lambda _{n}}\frac{k_{n1}}{k_{22}},0 \Big ]\\ b_{22}&= \Big [ -\xi _{2}\frac{k_{11}}{\lambda _{1}},-\xi _{2}k_{12},0,-\xi _{1}\frac{k_{21}}{\lambda _{2}},\xi _{1}k_{22},0,\ldots \\&\quad -\xi _{1}\frac{k_{n1}}{\lambda _{n}},-\xi _{1}k_{n2},0\Big ]\\ b_{23}&= \Big [\gamma _{2}\hat{z}_{21}\frac{k_{11}}{\lambda _{1}},\gamma _{2}\hat{z}_{21}k_{12},0,\gamma _{1}\hat{z}_{11}\frac{k_{21}}{\lambda _{2}}, \gamma _{1}\hat{z}_{11}k_{22},0,\ldots \\&\quad \gamma _{2}\hat{z}_{21}\frac{k_{n3}}{\lambda _{3}},\gamma _{2}\hat{z}_{21}k_{n2},0\Big ]. \end{aligned} \end{aligned}$$

Therefore, generalizing for n harmonics, one can describe the whole estimation error system as

$$\begin{aligned} \dot{e}= \mathcal {A}\, e+ \mathcal {B}\,e \end{aligned}$$
(C17)

where \(\mathcal {A}= \text {diag}\{\mathcal {A}_{1}(z_{1},\hat{z}_{1}), \mathcal {A}_{2}(z_{2},\hat{z}_{2}), \ldots , \mathcal {A}_{n}(z_{n},\hat{z}_{n}) \}\), \(\mathcal {B}=[ b_{1},b_{2},\ldots , b_{n} ]^{T}\) and \(e = [e_{1},e_{2},\ldots ,e_{n}]^{T}\). Then, it is possible to state the following general Lyapunov function

$$\begin{aligned} V(e)=e^{T}Pe,\qquad P=P^T>0 \end{aligned}$$
(C18)

with time derivative

$$\begin{aligned} \dot{V}(e)= \dot{e}^{T}Pe+e^{T}P\dot{e} \end{aligned}$$
(C19)

which can be described in terms of its nominal part (already demonstrated to be asymptotically stable through (C11)–(C12) for an n estimator, with stability degree given as \(\eta _n\)), and now with the inclusion of the interconnection part as

$$\begin{aligned} \dot{V}(e)&\le e^{T}(A^{T}P+PA)e +2 \left\| P\right\| \left\| \mathcal {B} \right\| \left\| e_{n}\right\| ^{2} \end{aligned}$$
(C20a)
$$\begin{aligned}&\le -\eta _{P}\left\| e_{n}\right\| ^{2}+2 \left\| P\right\| \left\| \mathcal {B} \right\| \left\| e_{n}\right\| ^{2} \end{aligned}$$
(C20b)
$$\begin{aligned}&\le -\left( \eta _{P}-2 \left\| P\right\| \left\| \mathcal {B} \right\| \right) \left\| e_{n}\right\| ^{2} \end{aligned}$$
(C20c)

where \(\eta _{P}\) is the general stability degree for the nominal part. Hence, if \(\eta _{P}>2 \left\| P\right\| \left\| \mathcal {B} \right\| \implies \dot{V}(e)< 0 \), then the error motion in (C17) is asymptotically stable. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-Paz, S., Ornelas-Tellez, F. & Rico-Melgoza, J.J. Dynamic harmonics–interharmonics identification and compensation through optimal control of a power conditioning application. Electr Eng 104, 3589–3602 (2022). https://doi.org/10.1007/s00202-022-01570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01570-z

Keywords

Navigation