Skip to main content
Log in

Frequency stability improvements based on automatic adjustment of synchronous power controller parameters

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents an automatic parameter adjustment technique for synchronous power controllers in order to improve the dynamic frequency stability of the low inertia power systems. The proposed control method is based on a novel transfer function in which various grid and converter controller parameters involved in the stability studies have been thoroughly included. As the main contribution of this paper, the eigenvalue trajectory of the proposed transfer function has been determined, considering the variations of both virtual inertia and damping control parameters simultaneously. Furthermore, any corresponding operating point on this eigenvalue trajectory can be specified based on the desired frequency response characteristics of the system. Therefore, the inertia and damping coefficients of the converter controller can be simultaneously adjusted through the proposed controller algorithm as the second contribution of this paper. Also, as another novelty of this paper, it is demonstrated through analytical and theoretical studies that both damping ratio and natural frequency characteristics of a dynamic frequency response have profound effects on the controller parameter value adjustments. Simulation results have been employed in MATLAB/Simulink to confirm the performance of the proposed controller regarding the appropriate parameter value adjustments, development of the desired dynamic frequency responses, and the prominent interactions between the frequency response characteristics and the converter controller parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. IEA (2020) World Energy Outlook 2020, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2020

  2. Phurailatpam C, Rather ZH, Bahrani B, Doolla S (2020) Measurement-based estimation of inertia in AC microgrids. IEEE Trans Sustain Energy 11(3):1975–1984. https://doi.org/10.1109/TSTE.2019.2948224

    Article  Google Scholar 

  3. Santos SF, Fitiwi DZ, Shafie-Khah M, Bizuayehu AW, Cabrita CMP, Catalão JPS (2017) New multistage and stochastic mathematical model for maximizing RES hosting capacity—part I: problem formulation. IEEE Trans Sustain Energy 8(1):304–319. https://doi.org/10.1109/TSTE.2016.2598400

    Article  Google Scholar 

  4. Santos SF, Fitiwi DZ, Shafie-khah M, Bizuayehu AW, Cabrita CMP, Catalão JPS (2017) New multi-stage and stochastic mathematical model for maximizing RES hosting capacity—part II: numerical results. IEEE Trans Sustain Energy 8(1):320–330. https://doi.org/10.1109/TSTE.2016.2584122

    Article  Google Scholar 

  5. Gu H, Yan R, Saha TK (2018) Minimum synchronous inertia requirement of renewable power systems. IEEE Trans Power Syst 33(2):1533–1543. https://doi.org/10.1109/TPWRS.2017.2720621

    Article  Google Scholar 

  6. Shahnazian F, Adabi J, Pouresmaeil E, Mehrasa M, Catalão JPS (2018) Circulating current elimination of grid-connected modular multilevel converters. In: 2018 IEEE international conference on environment and electrical engineering and 2018 IEEE industrial and commercial power systems europe (EEEIC/I&CPS Europe). pp 1–6. https://doi.org/10.1109/EEEIC.2018.8494496

  7. Chen T, Guo J, Chaudhuri B, Hui SY (2020) Virtual inertia from smart loads. IEEE Trans Smart Grid 11(5):4311–4320. https://doi.org/10.1109/TSG.2020.2988444

    Article  Google Scholar 

  8. Kumar KA, Kushwaha P, Prakash V, Bhakar R, Tiwari H, Sharma KG (2019) Inertia emulation trends in low carbon power system. In: 2019 8th international conference on power systems (ICPS), 20–22. pp 1–6. https://doi.org/10.1109/ICPS48983.2019.9067707

  9. Saeedian M, Pournazarian B, Taheri S, Pouresmaeil E (2021) Provision of synthetic inertia support for converter-dominated weak grids. IEEE Syst J. https://doi.org/10.1109/JSYST.2021.3060866

    Article  Google Scholar 

  10. Padilla LAO, Gallardo RP, Saldaña JAM (2019) A robustness study of power system stabilizers using dynamic modeling. IEEE Lat Am Trans 17(03):513–519. https://doi.org/10.1109/TLA.2019.8863322

    Article  Google Scholar 

  11. Xiong L, Liu X, Zhang D, Liu Y (2021) Rapid power compensation-based frequency response strategy for low-inertia power systems. IEEE J Emerg Sel Topics Power Electron 9:4500–4513. https://doi.org/10.1109/jestpe.2020.3032063

    Article  Google Scholar 

  12. Saeedian M, Sangrody R, Shahparasti M, Taheri S, Pouresmaeil E (2021) Grid-following DVI-based converter operating in weak grids for enhancing frequency stability. IEEE Trans Power Deliv 1:1. https://doi.org/10.1109/TPWRD.2021.3059898

    Article  Google Scholar 

  13. Tamrakar U, Shrestha D, Maharjan M, Bhattarai BP, Hansen TM, Tonkoski R (2017) Virtual inertia: current trends and future directions. Appl Sci. https://doi.org/10.3390/app7070654

    Article  Google Scholar 

  14. Wu Y, Yang W, Hu Y, Dzung P (2019) Frequency regulation at a wind farm using time-varying inertia and droop controls. IEEE Trans Ind Appl 55:213–224

    Article  Google Scholar 

  15. Mahish P, Pradhan A (2020) Distributed synchronized control in grid integrated wind farms to improve primary frequency regulation. IEEE Trans Power Syst 35:362–373

    Article  Google Scholar 

  16. Sun D, Liu H, Gao S, Wu L, Song P, Wang X (2020) Comparison of different virtual inertia control methods for inverter-based generators. J Modern Power Syst Clean Energy 8(4):768–777. https://doi.org/10.35833/MPCE.2019.000330

    Article  Google Scholar 

  17. Meng X, Liu J, Liu Z (2019) A generalized droop control for grid-supporting inverter based on comparison between traditional droop control and virtual synchronous generator control. IEEE Trans Power Electron 34(6):5416–5438. https://doi.org/10.1109/TPEL.2018.2868722

    Article  MathSciNet  Google Scholar 

  18. Rosso R, Cassoli J, Buticchi G, Engelken S, Liserre M (2019) Robust stability analysis of LCL filter based synchronverter under different grid conditions. IEEE Trans Power Electron 34:5842–5853

    Article  Google Scholar 

  19. Vetoshkin L, Müller Z (2020) A supervisory MPC for synchronverter. In: 2020 21st international scientific conference on electric power engineering (EPE), 19–21. pp 1–6. https://doi.org/10.1109/EPE51172.2020.9269232

  20. Xu H, Yu C, Liu C, Wang Q, Zhang X (2020) An improved virtual inertia algorithm of virtual synchronous generator. J Modern Power Syst Clean Energy 8(2):377–386. https://doi.org/10.35833/MPCE.2018.000472

    Article  Google Scholar 

  21. Zheng T, Chen L, Guo Y, Mei S (2018) Comprehensive control strategy of virtual synchronous generator under unbalanced voltage conditions. IET Gener Transm Distrib 12(7):1621–1630

    Article  Google Scholar 

  22. Zhang W, Cantarellas AM, Rocabert J, Luna A, Rodriguez P (2016) Synchronous power controller with flexible droop characteristics for renewable power generation systems. IEEE Trans Sustain Energy 7(4):1572–1582. https://doi.org/10.1109/TSTE.2016.2565059

    Article  Google Scholar 

  23. Rodríguez P, Citro C, Candela JI, Rocabert J, Luna A (2018) Flexible grid connection and islanding of SPC-based PV power converters. IEEE Trans Ind Appl 54(3):2690–2702. https://doi.org/10.1109/TIA.2018.2800683

    Article  Google Scholar 

  24. Zhang W, Remon D, Mir A, Luna A, Rocabert J, Candela I, Rodriguez P (2015) Comparison of different power loop controllers for synchronous power controlled grid-interactive converters. In: 2015 IEEE energy conversion congress and exposition (ECCE), 20–24. pp 3780–3787. https://doi.org/10.1109/ECCE.2015.7310194

  25. Poolla BK, Groß D, Dörfler F (2019) Placement and implementation of grid-forming and grid-following virtual inertia and fast frequency response. IEEE Trans Power Syst 34(4):3035–3046. https://doi.org/10.1109/TPWRS.2019.2892290

    Article  Google Scholar 

  26. Ademola-Idowu A, Zhang B (2021) Frequency stability using MPC-based inverter power control in low-inertia power systems. IEEE Trans Power Syst 36(2):1628–1637. https://doi.org/10.1109/TPWRS.2020.3019998

    Article  Google Scholar 

  27. Baltas GN, Lai NB, Marin L, Tarrasó A, Rodriguez P (2020) Grid-forming power converters tuned through artificial intelligence to damp subsynchronous interactions in electrical grids. IEEE Access 8:93369–93379. https://doi.org/10.1109/ACCESS.2020.2995298

    Article  Google Scholar 

  28. Yap KY, Sarimuthu CR, Lim JM (2020) Grid integration of solar photovoltaic system using machine learning-based virtual inertia synthetization in synchronverter. IEEE Access 8:49961–49976. https://doi.org/10.1109/ACCESS.2020.2980187

    Article  Google Scholar 

  29. Zhang W, Tarraso A, Rocabert J, Luna A, Candela JI, Rodriguez P (2019) Frequency support properties of the synchronous power control for grid-connected converters. IEEE Trans Ind Appl 55(5):5178–5189. https://doi.org/10.1109/TIA.2019.2928517

    Article  Google Scholar 

  30. Shahnazian F, Adabi J, Pouresmaeil E (2021) Enhanced control of voltage source converters considering virtual inertia theory. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.13245

    Article  Google Scholar 

  31. Khazaei J, Tu Z, Liu W (2020) Small-signal modeling and analysis of virtual inertia-based PV systems. IEEE Trans Energy Convers 35(2):1129–1138. https://doi.org/10.1109/TEC.2020.2973102

    Article  Google Scholar 

  32. Marin L, Tarras A, Candela I, Rodriguez P (2018) Stability analysis of a grid-connected VSC controlled by SPC. In: 2018 7th international conference on renewable energy research and applications (ICRERA), 14–17. pp 1209–1214. https://doi.org/10.1109/ICRERA.2018.8567018

  33. Zhang W, Remon D, Rodriguez P (2017) Frequency support characteristics of grid-interactive power converters based on the synchronous power controller. IET Renew Power Gener 11(4):470–479. https://doi.org/10.1049/iet-rpg.2016.0557

    Article  Google Scholar 

  34. Rodriguez P, Candela I, Luna A (2013) Control of PV generation systems using the synchronous power controller. In: 2013 IEEE energy conversion congress and exposition, 15–19. pp 993–998. https://doi.org/10.1109/ECCE.2013.6646811

  35. Abdollahi M, Candela JI, Rocabert J, Aguilar RSM, Hermoso JR (2016) Synchronous power controller merits for dynamic stability improvement in long line by renewables. In: 2016 IEEE international conference on renewable energy research and applications (ICRERA), 20–23. pp 760–765. https://doi.org/10.1109/ICRERA.2016.7884438

Download references

Funding

This work was supported by the Babol Noshirvani University of Technology under Grant BNUT/389051/99.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Adabi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahnazian, F., Adabi, J. & Pouresmaeil, E. Frequency stability improvements based on automatic adjustment of synchronous power controller parameters. Electr Eng 104, 3453–3463 (2022). https://doi.org/10.1007/s00202-022-01558-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-022-01558-9

Keywords

Navigation