Skip to main content

Advertisement

Log in

Improvement of the induction motor sensorless control based on the type-2 fuzzy logic

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents MRAS speed sensorless control of induction motor using type-2 fuzzy logic controller (T2FLC). These controllers replace the PI ones, in the new MRAS strategy proposed in Benlaloui et al. (IEEE Trans Energy Convers 30(2):588–595, 2015), in order to improve the induction motor performances and robustness at low speed region. Indeed, the choice of these controllers is made because of their adaptation-based schemes which permit to handle nonlinear uncertain systems without the need of precise mathematical model required when using PI controllers. Comparative study had shown a better rejection of disturbance and high insensitivity to stator resistance compared to the PI and the T1FLC controllers. The effectiveness of the proposed speed-based T2FLC estimation method and its good robustness are validated by simulation and by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Abbreviations

MRAS:

Model Reference Adaptive System

T2FLC:

Type-2 Fuzzy Logic Controller

IM:

Induction machines

FOC:

Field-oriented control

PI:

Proportional–integral

IFOC:

Indirect field-oriented control

s, r :

Rotor and stator indices

d, q :

Direct and quadrate indices for orthogonal components

P :

Number of pairs poles

Ω :

Rotor speed (rd/s)

ω r :

Induced rotor current frequency (rd/s)

J in :

Inertia

Γ :

Unknown torque

*:

Symbol indicating the command value

\(\overline{x}^{*}\) :

Complex conjugate

\(R_{{\text{s}}} ,R_{{\text{r}}}\) :

Stator and rotor resistances

\(L_{s} ,L_{r}\) :

Stator and rotor inductances

\(T_{{\text{s}}} ,T_{{\text{r}}}\) :

Stator and rotor time constants (Ts,r = Ls,r/Rs, r)

σ :

Leakage flux total coefficient (σ = 1 − M2/LrLs)

M :

Mutual inductance

ω :

Mechanical rotor frequency (rd/s)

ω s :

Stator current frequency (rd/s)

f :

Coefficient of viscous

Γ e :

Electromagnetic torque

References

  1. Ha J-I, Sul S-K (1999) Sensorless field-orientation control of an induction machine by high-frequency signal injection. IEEE Trans Ind Appl 35(1):45–51. https://doi.org/10.1109/28.740844

    Article  Google Scholar 

  2. Maiti S, Chakraborty C, Hori Y, Ta MC (2008) Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power. IEEE Trans Ind Electron 55(2):594–601. https://doi.org/10.1109/TIE.2007.911952

    Article  Google Scholar 

  3. Comanescu M, Xu L (2006) Sliding-mode MRAS speed estimators for sensorless vector control of induction machine. IEEE Trans Ind Electron 53(1):146–153. https://doi.org/10.1109/TIE.2005.862303

    Article  Google Scholar 

  4. Ravi Teja AV, Verma V, Chakraborty C (2015) A new formulation of reactive-power-based model reference adaptive system for sensorless induction motor drive. IEEE Trans Ind Electron 62(11):6797–6808. https://doi.org/10.1109/TIE.2015.2432105

    Article  Google Scholar 

  5. Zorgani YA, Koubaa Y, Boussak M (2016) MRAS state estimator for speed sensorless ISFOC induction motor drives with Luenberger load torque estimation. ISA Trans 61:308–317. https://doi.org/10.1016/j.isatra.2015.12.015

    Article  Google Scholar 

  6. Das S, Kumar R, Pal A (2019) MRAS-based speed estimation of induction motor drive utilizing machines’ d- and q-circuit impedances. IEEE Trans Ind Electron 66(6):4286–4295. https://doi.org/10.1109/TIE.2018.2860530

    Article  Google Scholar 

  7. Kumar R, Das S, Bhaumik A (2019) Speed sensorless model predictive current control of doubly-fed induction machine drive using model reference adaptive system. ISA Trans 86:215–226. https://doi.org/10.1016/j.isatra.2018.10.025

    Article  Google Scholar 

  8. Dehghan-Azad E, Gadoue S, Atkinson D, Slater H, Barrass P, Blaabjerg F (2018) Sensorless control of IM based on stator-voltage MRAS for limp-home EV applications. IEEE Trans Power Electron 33(3):1911–1921. https://doi.org/10.1109/TPEL.2017.2695259

    Article  Google Scholar 

  9. Korzonek M, Tarchala G, Orlowska-Kowalska T (2019) A review on MRAS-type speed estimators for reliable and efficient induction motor drives. ISA Trans 93:1–13. https://doi.org/10.1016/j.isatra.2019.03.022

    Article  Google Scholar 

  10. Sun X, Chen L, Yang Z, Zhu H (2013) Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer. IEEE/ASME Trans Mechatron 18(4):1357–1366. https://doi.org/10.1109/tmech.2012.2202123

    Article  Google Scholar 

  11. Sun X, Hu C, Lei G, Yang Z, Guo Y, Zhu J (2020) Speed sensorless control of SPMSM drives for EVs with a binary search algorithm-based phase-locked loop. IEEE Trans Veh Technol 69:4968–4978. https://doi.org/10.1109/tvt.2020.2981422

    Article  Google Scholar 

  12. Sun X, Cao J, Lei G, Guo Y, Zhu J (2020) Speed sensorless control for permanent magnet synchronous motors based on finite position set. IEEE Trans Ind Electron 67(7):6089–6100. https://doi.org/10.1109/tie.2019.2947875

    Article  Google Scholar 

  13. Hinkkanen M, Luomi J (2003) Modified integrator for voltage model flux estimation of induction motors. IEEE Trans Ind Electron 50(4):818–820. https://doi.org/10.1109/TIE.2003.814996

    Article  Google Scholar 

  14. Pal A, Das S, Chattopadhyay AK (2018) An improved rotor flux space vector based MRAS for field-oriented control of induction motor drives. IEEE Trans Power Electron 33(6):5131–5141. https://doi.org/10.1109/TPEL.2017.2657648

    Article  Google Scholar 

  15. Smith AN, Gadoue SM, Finch JW (2016) Improved rotor flux estimation at low speeds for torque MRAS-based sensorless induction motor drives. IEEE Trans Energy Convers 31(1):270–282. https://doi.org/10.1109/TEC.2015.2480961

    Article  Google Scholar 

  16. Rashed M, Stronach AF (2004) A stable back-EMF MRAS-based sensorless low-speed induction motor drive insensitive to stator resistance variation. IEE Proc Electr Power Appl 151(6):685. https://doi.org/10.1049/ip-epa:20040609

    Article  Google Scholar 

  17. Zaky MS, Khater MM, Shokralla SS, Yasin HA (2009) Wide-speed-range estimation with online parameter identification schemes of sensorless induction motor drives. IEEE Trans Ind Electron 56(5):1699–1707. https://doi.org/10.1109/TIE.2008.2009519

    Article  Google Scholar 

  18. Huang S, Wang Y, Gao J, Lu J, and Qiu S (2004) The vector control based on MRAS speed sensorless induction motor drive. In: Fifth world congress on intelligent control and automation (IEEE Cat. No. 04EX788), 5: 4550–4553. https://doi.org/10.1109/wcica.2004.1342378

  19. Karanayil B, Rahman MF, Grantham C (2004) An implementation of a programmable cascaded low-pass filter for a rotor flux synthesizer for an induction motor drive. IEEE Trans Power Electron 19(2):257–263. https://doi.org/10.1109/TPEL.2003.823181

    Article  Google Scholar 

  20. Benlaloui I, Drid S, Khamari D, Chrifi-Alaoui L, Marhic B, and Ouriagli M (2016) Analysis and design of rotor MRAS speed sensorless with a novel approach. In: 2016 17th International conference on sciences and techniques of automatic control and computer engineering (STA) 4:73–77. https://doi.org/10.1109/STA.2016.7952016

  21. Benlaloui I, Drid S, Chrifi-Alaoui L, Ouriagli M (2015) Implementation of a new MRAS speed sensorless vector control of induction machine. IEEE Trans Energy Convers 30(2):588–595. https://doi.org/10.1109/STA.2016.7952016

    Article  Google Scholar 

  22. Hakju L, Jaedo L, and Sejin S (2001) Approach to fuzzy control of an indirect field-oriented induction motor drives. In: ISIE 2001. 2001 IEEE international symposium on industrial electronics proceedings (Cat. No. 01TH8570) 2(1):1119–1123. https://doi.org/10.1109/ISIE.2001.931633

  23. Badr BM, Eltamaly AM, Alolah AI (2010) Fuzzy controller for three phases induction motor drives. IEEE Veh Power Propuls Conf 2010:1–6. https://doi.org/10.1109/VPPC.2010.5729080

    Article  Google Scholar 

  24. Khemis A, Benlaloui I, Drid S, Chrifi-Alaoui L, Khamari D, Menacer A (2018) High-efficiency induction motor drives using type-2 fuzzy logic. Eur Phys J Plus 133(3):86. https://doi.org/10.1140/epjp/i2018-11903-6

    Article  Google Scholar 

  25. Ramesh T, Kumar Panda A, Shiva Kumar S (2015) Type-2 fuzzy logic control based MRAS speed estimator for speed sensorless direct torque and flux control of an induction motor drive. ISA Trans 57:262–275. https://doi.org/10.1016/j.isatra.2015.03.017

    Article  Google Scholar 

  26. Phukon LJ, Baruah N (2015) Design of fuzzy logic controller for performance optimisation of induction motor using indirect. Int J Electr Electron Data Commun 3(2):72–78

    Google Scholar 

  27. Rashed Mohan Krishna S, Febin Daya JL (2016) MRAS speed estimator with fuzzy and PI stator resistance adaptation for sensorless induction motor drives using RT-lab. Perspect Sci 8:121–126. https://doi.org/10.1016/j.pisc.2016.04.013

    Article  Google Scholar 

  28. Hong Y-Y, Buay PMP (2020) Robust design of type-2 fuzzy logic-based maximum power point tracking for photovoltaics. Sustain Energy Technol Assess 38:100669. https://doi.org/10.1016/j.seta.2020.100669

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idriss Benlaloui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Machine parameters and rated values

Rr = 5.1498 Ω; Rs = 12.75 Ω; M = 0. 4331 H; Ls = 0. 4991 H; Lr = 0.4331 H; J = 0.0035 kg m2; f = 0.001 Nm s/rd; Pn = 0.9 kW; n = 1400 rpm; p = 2; f = 50 Hz; load torque = 10 Nm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benlaloui, I., Chrifi-Alaoui, L., Ouriagli, M. et al. Improvement of the induction motor sensorless control based on the type-2 fuzzy logic. Electr Eng 103, 1473–1482 (2021). https://doi.org/10.1007/s00202-020-01178-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01178-1

Keywords

Navigation