Skip to main content
Log in

Reduced search space combined with particle swarm optimization for distribution system reconfiguration

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents a methodology based on a mesh analysis technique to reduce the search space of the distribution system reconfiguration problem. After reducing the search space, the metaheuristic particle swarm optimization (PSO) was used to solve the problem, finding the best values presented in the literature. In the proposed methodology, the subsets of candidate switches were initially established through a two-stage heuristics. In the first stage, the number of open switches required to keep the radial configuration was calculated, which is the number of meshes on the system, and in the sequence the switches that make up each mesh were identified. In each subset, only one switch is opened, which makes the search process more efficient, compared to the analysis using all the switches. In the second stage of heuristic, the number of switches of the subsets was decreased with the help of an optimal power flow (OPF), which determines the switches from the subsets of first stage more propitious to be opened, this being the main contribution of the work. The PSO was developed for minimizing power losses in the distribution network lines subject to the following constraints: (a) minimum and maximum voltage limits; (b) radial network topology; and (c) balance of active and reactive power in the network buses. The algorithm was validated in four radial distribution systems: 5 nodes with 7 lines, 16 nodes with 21 lines, 33 nodes with 37 lines and 70 nodes with 74 lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pegado R, Ñaupari Z, Molina Y, Castillo C (2019) Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO. Electr Power Syst Res 169:206–213. https://doi.org/10.1016/j.epsr.2018.12.030

    Article  Google Scholar 

  2. Isac Silva L, Antonio Belati E, Chaves Silva Junior I (2016) Heuristic algorithm for electrical distribution systems reconfiguration based on firefly movement equation. IEEE Lat Am Trans 14:752–758. https://doi.org/10.1109/TLA.2016.7437219

    Article  Google Scholar 

  3. Dahalan WM, Mokhlis H, Bakar AHA, Jamian JJ (2013) The Simultaneous application of optimum network reconfiguration and distributed generation sizing using PSO for power loss reduction. Prz Elektrotechniczny 89:137–141

    Google Scholar 

  4. Torres J, Guardado JL, Rivas-Dávalos F et al (2013) A genetic algorithm based on the edge window decoder technique to optimize power distribution systems reconfiguration. Int J Electr Power Energy Syst 45:28–34. https://doi.org/10.1016/j.ijepes.2012.08.075

    Article  Google Scholar 

  5. Merlin A, Back H (1975) Search for a minimal-loss operating spanning tree configuration in an urban power distribution system

  6. Peponis G, Papadopoulos M (1995) Reconfiguration of radial distribution networks: application of heuristic methods on large-scale networks. IEE Proc Gener Transm Distrib 142:631–637. https://doi.org/10.1049/ip-gtd:19952155

    Article  Google Scholar 

  7. Ching-Tzong Su, Lee C-S (2003) Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution. IEEE Trans Power Deliv 18:1022–1027. https://doi.org/10.1109/tpwrd.2003.813641

    Article  Google Scholar 

  8. Salume GN, Gomes FV, Pereira JLR, Garcia PAN (2006) Reconfiguração de Sistemas de Distribuição Desbalanceados Utilizando Metodologia Heurística e Fluxo de Potência Trifásico. In: Proceedings of the XVI Congresso Brasileiro de Automática - CBA 2006. Salvador-BA, Brazil

  9. Chiang HD, Jean-Jumeau R (1990a) Optimal network reconfigurations in distribution systems: Part 1: a new formulation and a solution methodology. IEEE Trans Power Deliv 5:1902–1909. https://doi.org/10.1109/61.103687

    Article  Google Scholar 

  10. Rupolo D, Mantovani JRS (2015) Reconfiguration of radial electric power distribution system via a scatter search algorithm. IEEE Lat Am Trans 13:1022–1028. https://doi.org/10.1109/TLA.2015.7106352

    Article  Google Scholar 

  11. Nguyen TT, Truong AV, Phung TA (2016) A novel method based on adaptive cuckoo search for optimal network reconfiguration and distributed generation allocation in distribution network. Int J Electr Power Energy Syst 78:801–815. https://doi.org/10.1016/j.ijepes.2015.12.030

    Article  Google Scholar 

  12. Souifi H, Kahouli O, Hadj Abdallah H (2019) Multi-objective distribution network reconfiguration optimization problem. Electr Eng 101:45–55. https://doi.org/10.1007/s00202-019-00755-3

    Article  Google Scholar 

  13. Vasudevan B, Sinha AK (2018) Reliability improvement of reconfigurable distribution system using GA and PSO. Electr Eng 100:1263–1275. https://doi.org/10.1007/s00202-017-0580-9

    Article  Google Scholar 

  14. Schmidt HP, Cabezas AMG, Kagan N et al (2008) Reconfiguración de sistemas de distribución utilizando el Método de Newton en formulaciones cuadráticas. IEEE Lat Am Trans 6:162–169. https://doi.org/10.1109/TLA.2008.4609913

    Article  Google Scholar 

  15. Gerez C, Silva LI, Belati EA et al (2019) Distribution network reconfiguration using selective firefly algorithm and a load flow analysis criterion for reducing the search space. IEEE Access 7:67874–67888. https://doi.org/10.1109/ACCESS.2019.2918480

    Article  Google Scholar 

  16. Rahim MNA, Mokhlis H, Bakar AHA et al (2019) Protection coordination toward optimal network reconfiguration and DG sizing. IEEE Access 7:163700–163718. https://doi.org/10.1109/ACCESS.2019.2952652

    Article  Google Scholar 

  17. Baran ME, Wu FF (1989) Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans Power Deliv 4:1401–1407. https://doi.org/10.1109/61.25627

    Article  Google Scholar 

  18. Shirmohammadi D, Hong HW (1989) Reconfiguration of electric distribution networks for resistive line losses reduction. IEEE Trans Power Deliv 4:1492–1498. https://doi.org/10.1109/61.25637

    Article  Google Scholar 

  19. McDermott TE, Drezga I, Broadwater R (1999) A Heuristic nonlinear constructive method for distribution system reconfiguration. IEEE Trans Power Syst 14:478–483

    Article  Google Scholar 

  20. Goswami SK, Basu SK (1992) A new algorithm for the reconfiguration of distribution feeders for loss minimization. IEEE Trans Power Deliv 7:1484–1491

    Article  Google Scholar 

  21. Gomes FV, Carneiro S, Pereira JLR et al (2005) A new heuristic reconfiguration algorithm for large distribution systems. IEEE Trans Power Syst 20:1373–1378. https://doi.org/10.1109/TPWRS.2005.851937

    Article  Google Scholar 

  22. Man-Im A, Ongsakul W, Singh JG, Madhu MN (2019) Multi-objective optimal power flow considering wind power cost functions using enhanced PSO with chaotic mutation and stochastic weights. Electr Eng 101:699–718. https://doi.org/10.1007/s00202-019-00815-8

    Article  Google Scholar 

  23. Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetics. IEEE Trans Antennas Propag 52:397–407. https://doi.org/10.1109/TAP.2004.823969

    Article  MathSciNet  MATH  Google Scholar 

  24. Swarnkar A, Gupta N, Niazi KR (2011) Efficient reconfiguration of distribution systems using ant colony optimization adapted by graph theory. In: 2011 IEEE power and energy society general meeting. pp 1–8

  25. Dommel HW, Tinney WF (1968) Optimal power flow solutions. IEEE Trans Power Appar Syst PAS-87:1866–1876. https://doi.org/10.1109/TPAS.1968.292150

    Article  Google Scholar 

  26. Carpentier J (1962) Contribution à l’étude du dispatching économique. Bull la Soc Fr des Electrciens pp 431–437

  27. Vargas GAL, Tabares HG, Murari ALL et al (2015) Analysis of transmission systems with optimal power flow and Dobly-fed induction generator. IEEE Lat Am Trans. https://doi.org/10.1109/TLA.2015.7273777

    Article  Google Scholar 

  28. de Sousa VA, Baptista EC, da Costa GRM (2012) Optimal reactive power flow via the modified barrier Lagrangian function approach. Electr Power Syst Res 84:159–164. https://doi.org/10.1016/j.epsr.2011.11.001

    Article  Google Scholar 

  29. Torres GL, Quintana VH (1998) An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Trans Power Syst 13:1211–1218. https://doi.org/10.1109/59.736231

    Article  Google Scholar 

  30. Baptista EC, Belati EA, Sousa VA, da Costa GRM (2006) Primal-dual logarithmic barrier and augmented Lagrangian function to the loss minimization in power systems. Electr Power Compon Syst. https://doi.org/10.1080/15325000500488602

    Article  Google Scholar 

  31. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35:268–308. https://doi.org/10.1145/937503.937505

    Article  Google Scholar 

  32. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks. IEEE, pp 1942–1948

  33. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: 1998 IEEE international conference on evolutionary computation proceedings. IEEE World congress on computational intelligence (Cat. No.98TH8360). pp 69–73

  34. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. IEEE Int Conf Syst Man Cybern Comput Cybern Simul 5:4104–4108. https://doi.org/10.1109/ICSMC.1997.637339

    Article  Google Scholar 

  35. Khalil TM, Gorpinich AV (2012) Selective particle swarm optimization. Int J Multidiscip Sci Eng 3:2–5

    Google Scholar 

  36. Bansal JC, Singh PK, Saraswat M, et al. (2011) Inertia weight strategies in particle swarm optimization. In: 2011 Third world congress on nature and biologically inspired computing. pp 633–640

  37. Belati EA, Nascimento CF, Dietrich AB, de Faria Jr H (2014) Sensitivity analysis applied to nodal technical losses evaluation in power transmission systems. Int Trans Electr Energy Syst. https://doi.org/10.1002/etep.1682

    Article  Google Scholar 

  38. Xin J, Chen G, Hai Y (2009) A particle swarm optimizer with multi-stage linearly-decreasing inertia weight. In: 2009 International joint conference on computational sciences and optimization. pp 505–508

  39. Lavorato M, Franco JF, Rider MJ, Romero R (2012) Imposing radiality constraints in distribution system optimization problems. IEEE Trans Power Syst 27:172–180. https://doi.org/10.1109/TPWRS.2011.2161349

    Article  Google Scholar 

  40. Pereira FS (2010) Reconfiguração ótima de sistemas de distribuição de energia elétrica baseado no comportamento de colônias de formigas. Tese de Doutorado, Escola de Engenharia de São Carlos, Universidade de São Paulo - USP, São Carlos - SP

  41. da Silva LI, Belati EA (2014) Reconfiguração de Sistemas Elétricos de Distribuição por Meio de Aproximação Heurística com a Equação de Movimento do Vagalume. Dissertação 156

  42. Gomes FV, Pereira JLR, Garcia PN et al (2006) Reconfiguração de sistemas de distribuição utilizando fluxo de potência ótimo e análise de sensibilidade. Sba Control Automação Soc Bras Autom 17:469–477

    Article  Google Scholar 

  43. AMPL (2013) A modeling language for mathematical programming

  44. Byrd RH, Nocedal J, Waltz RA (2006) Knitro: an integrated package for nonlinear optimization, pp 35–59 https://doi.org/10.1007/0-387-30065-1_4

  45. Abur A (1996) A modified linear programming method for distribution system reconfiguration. Int J Electr Power Energy Syst 18:469–474

    Article  Google Scholar 

  46. Chiang H-D, Jean-Jumeau R (1990b) Optimal network reconfigurations in distribution systems. II. Solution algorithms and numerical results. IEEE Trans Power Deliv 5:1568–1574. https://doi.org/10.1109/61.58002

    Article  Google Scholar 

  47. Zimmerman RD, Murillo-Sanchez CE Matpower User’s Manual

  48. Zimmerman RD, Murillo-Sanchez CE, Thomas RJ (2011) MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans Power Syst 26:12–19. https://doi.org/10.1109/TPWRS.2010.2051168

    Article  Google Scholar 

  49. ANEEL (2009) Agencia Nacional de Energia Elétrica (ANEEL). Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional—PRODIST Módulo 8—Qualidade da Energia Elétrica

  50. Mantovani JRS, Casari F, Romero RA (2000) Reconfiguração de Sistemas de Distribuição Radiais Utilizando o Critério de Queda de Tensão. SBA Control Automação 11:150–159

    Google Scholar 

  51. Jabr RA, Dzafic I, Huseinagic I (2018) Real time optimal reconfiguration of multiphase active distribution networks. IEEE Trans Smart Grid 9:6829–6839. https://doi.org/10.1109/TSG.2017.2724766

    Article  Google Scholar 

  52. Morton AB, Mareels IMY (2000) An efficient brute-force solution to the network reconfiguration problem. IEEE Trans Power Deliv 15:996–1000. https://doi.org/10.1109/61.871365

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Brazilian National Research Council (CNPQ -305266/2018), FAPESP under Grant 2018/03051-2 and Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmarcio A. Belati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.I., Belati, E.A., Gerez, C. et al. Reduced search space combined with particle swarm optimization for distribution system reconfiguration. Electr Eng 103, 1127–1139 (2021). https://doi.org/10.1007/s00202-020-01150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01150-z

Keywords

Navigation