Skip to main content

Advertisement

Log in

Determination of electric motor losses and critical temperatures through an inverse approach

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this study, a practical numerical method is proposed to estimate losses of high specific power density electric motors, using few simulated temperature data. In such electric motors, these losses generate high heat fluxes inside the motor components that can be critically sensitive to temperature. Electromagnetic and mechanical friction phenomena are behind the occurring of these thermal dissipations. For both phenomena, losses could be difficult to compute with electrical or mechanical approaches. However, thermal management of electric motors requires a precise knowledge of those losses, in particular for high-performance motors such as those considered in future hybrid planes. To determine electric motor losses in a permanent magnet synchronous motor (PMSM) in real time, an inverse method using a lumped parameter thermal model (LPTM) is elaborated. In the first step, the dynamic profile of losses is determined through the inverse method, based on temperature data at easy-access points of the motor. In a second step, the identified losses are used to find temperatures at critical non-accessible hot spot points of the motor through forward LPTM. The method is applied for three useful cases, from the simplest case scenario, where only one type of losses has to be identified, to the most complicated case where all losses are simultaneously estimated. A global strategy for the choice of the number of future time steps used for regularization of the ill-posed problem is also proposed. Results show that this method enables adequate real-time supervision of the critical motor temperatures, mainly rotor and winding core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A (N,N):

State matrix

B c (N):

Command vector relative to environment

B P (N,n p):

Command matrix relative to heat sources

C p :

Specific heat, J·kg1·K1

C (n q ,N):

Output matrix

h :

Convective exchange coefficient, W·m­2·K1

I :

Identity matrix

κ :

Thermal conductivity, W·m1·K1

N :

Number of nodes

nf :

Number of future times for specification function

n p :

Number of heat sources

n q :

Number of outputs

nt :

Number of time steps

P :

Heat source vector, W

U :

Vector of unknown heat sources

V :

Vector of known inputs

vol:

Volume, m3

Y (n q):

Output vector

FTS:

Future time steps

LPTM:

Lumped parameter thermal model

PMSM:

Permanent magnet synchronous machine

SM:

Surface mounted

Γ:

System boundary

Δt :

Time step, s

ρ :

Density, kg·m3

σ U :

Mean quadratic error for U, W

σ Y :

Mean quadratic error for Y, °C

χ :

Characteristic space function

Ω:

System domain

ext:

Exterior

k :

Time index

* :

Noisy temperature

^ :

Estimated value

T :

Transposition sign

1:

Inverse of a matrix

References

  1. Bilgin B, Magne P, Malysz P, Yang Y, Pantelic V, Preindl M et al (2015) Making the case for electrified transportation. IEEE Trans Transp Electr 1(1):4–17

    Article  Google Scholar 

  2. de Santiago J, Bernhoff H, Ekergård B, Eriksson S, Ferhatovic S, Waters R et al (2012) Electrical motor drivelines in commercial all-electric vehicles: a review. IEEE Trans Veh Technol 61(2):475–484

    Article  Google Scholar 

  3. Siemens. Electric propulsion components with high power densities for aviation. Transformative Vertical Flight Workshop; 2015 Mar 8

  4. ZUNUM Aero—JetBlue Technology Ventures [Internet]. https://www.jetblueventures.com/portfolio/zunum-aero/

  5. Welstead J, Felder JL (2016) Conceptual design of a single-aisle turboelectric commercial transport with fuselage boundary layer ingestion. In: 54th AIAA Aerospace Sciences Meeting [Internet]. San Diego, California, USA: American Institute of Aeronautics and Astronautics; 2016. https://arc.aiaa.org/doi/10.2514/6.2016-1027

  6. E-Fan X [Internet]. Airbus. https://www.airbus.com/innovation/future-technology/electric-flight/e-fan-x.html

  7. Lefevre Y, El-Aabid S, Llibre J-F, Henaux C, Touhami S (2019) Performance assessment tool based on loadability concepts. Int J Appl Electromagn Mech 59(2):687–694

    Article  Google Scholar 

  8. Popescu M, Staton DA, Boglietti A, Cavagnino A, Hawkins D, Goss J (2016) modern heat extraction systems for power traction machines—a review. IEEE Trans Ind Appl 52(3):2167–2175

    Article  Google Scholar 

  9. Nategh S, Boglietti A, Liu Y, Barber D, Brammer R, Lindberg D, Aglen O (2020) A review on different aspects of traction motor design for railway applications. IEEE Trans Ind Appl 56(3):2148–2157

    Article  Google Scholar 

  10. de Paula Machado Bazzo T, Kölzer JF, Carlson R, Wurtz F, Gerbaud L (2017) Multiphysics design optimization of a permanent magnet synchronous generator. IEEE Trans Ind Electron 64(12):9815–9823

    Article  Google Scholar 

  11. Farsane K, Desevaux P, Panday PK (2000) Experimental study of the cooling of a closed type electric motor. Appl Therm Eng 20(14):1321–1334

    Article  Google Scholar 

  12. Woodbury KA (2002) Inverse Engineering Handbook [Internet]. CRC Press. https://www.taylorfrancis.com/books/9780429117893

  13. Khelifa M, Mordjaoui M, Medoued A (2017) An inverse problem methodology for design and optimization of an interior permanent magnetic BLDC motor. Int J Hydrog Energy 42(28):17733–17740

    Article  Google Scholar 

  14. Davin T, Pellé J, Harmand S, Yu R (2017) Motor cooling modeling: an inverse method for the identification of convection coefficients. J Therm Sci Eng Appl 9(4):041009–041009–13

    Article  Google Scholar 

  15. Vansompel H, Yarantseva A, Sergeant P, Crevecoeur G (2019) An inverse thermal modeling approach for thermal parameter and loss identification in an axial flux permanent magnet machine. IEEE Trans Ind Electron 66(3):1727–1735

    Article  Google Scholar 

  16. Nair DG, Rasilo P, Arkkio A (2018) Sensitivity analysis of inverse thermal modelling to determine power losses in electrical machines. IEEE Trans Magn 54(11):1–5

    Article  Google Scholar 

  17. Nair DG, Arkkio A (2017) Inverse thermal modeling to determine power losses in induction motor. IEEE Trans Magn 53(6):1–4

    Article  Google Scholar 

  18. Marinova I, Mattev V (2012) Inverse source problem for thermal fields. COMPEL Int J Comput Math Electr Electron Eng 31(3):996–1006

    Article  Google Scholar 

  19. Hey J, Malloy AC, Martinez-Botas R, Lamperth M (2016) On-line monitoring of electromagnetic losses in an electric motor indirectly through temperature measurement. IEEE Trans Energy Conv 31(4):1347–1355

    Article  Google Scholar 

  20. Huang C-H, Lo H-C (2006) A three-dimensional inverse problem in estimating the internal heat flux of housing for high speed motors. Appl Therm Eng 26(14):1515–1529

    Article  Google Scholar 

  21. Scott EP, Beck JV (1989) Analysis of order of the sequential regularization solutions of inverse heat conduction problems. ASME J Heat Transf 111:218–224

    Article  Google Scholar 

  22. Osman AM, Dowding KJ, Beck JV (1997) Numerical solution of the general two-dimensional inverse heat conduction problem. ASME J Heat Transf 119:38–45

    Article  Google Scholar 

  23. Touhami S, Lefevre Y, Llibre JF (2019) Original optimization procedures of halbach permanent magnet segmented array. In: 19th international symposium on electromagnetic fields in mechatronics, electrical and electronic engineering (ISEF), France

  24. Touhami S, Zeaiter A, Fénot M, Lefèvre Y, Llibre JF, Videcoq E (2020) Electro-thermal models and design approach for high specific power electric motor for hybrid aircraft. In: Aerospace Europe Conference, Bordeaux, France, Feb. 2020, Accessed: Apr. 22, 2020. https://aerospace-europe2020.eu/

  25. Gai Y, Kimiabeigi M, Chuan Chong Y, Widmer JD, Deng X, Popescu M et al (2019) Cooling of automotive traction motors: schemes, examples, and computation methods. IEEE Trans Ind Electron 66(3):1681–1692

    Article  Google Scholar 

  26. Tighe C, Gerada C, Pickering S (2016) Assessment of cooling methods for increased power density in electrical machines. In: 2016 XXII international conference on electrical machines (ICEM). 2016. p. 2626–2632

  27. Nategh S, Barber D, Boglietti A, Lindberg D, Aglen O, Brammer R (2018) A study on thermal effects of different potting strategies in traction motors. In: 2018 IEEE international conference on electrical systems for aircraft, railway, ship propulsion and road vehicles & international transportation electrification conference (ESARS-ITEC) [Internet]. Nottingham: IEEE; 2018. pp 1–6. https://ieeexplore.ieee.org/document/8607600/

  28. Zeaiter A, Fénot M (2018) Thermal sensitivity analysis of a high power density electric motor for aeronautical application. In: 2018 IEEE international conference on electrical systems for aircraft, railway, ship propulsion and road vehicles international transportation electrification conference (ESARS-ITEC). 2018. pp 1–6

  29. Beck JV, Blackwell B, St. Clair CR (1985) Inverse heat conduction: ill-posed problems. Wiley, New York

    MATH  Google Scholar 

  30. Videcoq E, Petit D, Piteau A (2003) Experimental modelling and estimation of time varying thermal sources. Int J Therm Sci 42(3):255–265

    Article  Google Scholar 

  31. Beck JV, Blackwell B, Haji-Sheikh A (1996) Comparison of some inverse heat conduction methods using experimental data. Int J Heat Mass Transf 39(17):3649–3657

    Article  Google Scholar 

  32. Blanc G, Raynaud M, Chau TH (1998) A guide for the use of the function specification method for 2D inverse heat conduction problems. Rev Générale Therm 37(1):17–30

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 (Cleansky 2 JTI) research and innovation program, 2014-2024 under Grant Agreement No. 715483.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Zeaiter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeaiter, A., Videcoq, E. & Fénot, M. Determination of electric motor losses and critical temperatures through an inverse approach. Electr Eng 103, 621–631 (2021). https://doi.org/10.1007/s00202-020-01098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01098-0

Keywords

Navigation