Skip to main content
Log in

An adaptive compensation droop control strategy for reactive power sharing in islanded microgrid

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In a parallel distributed generation system, the conventional droop control strategy makes it difficult for the inverter to output reactive power precisely due to the line impedance uncertainty and load fluctuation, which leads to a voltage deviation of the microgrid system. In order to precisely distribute reactive power, this paper advances an adaptive compensation strategy based on fuzzy control. The fuzzy controller detects the load power of AC bus terminal and output adaptive power coefficient to adjust amplitude voltage to generate compensation voltage. The compensation voltage is fed back to the d-axis voltage of the power loop for reactive power redistribution. Because the fuzzy control membership function value is difficult to determine accurately, this paper puts forward a method which combines neural network with fuzzy control to determine membership function values and fuzzy rules. Simulations and experimental results show that the adaptive compensation control strategy can share power accurately with good dynamic characteristics and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Mehrizi-Sani A, Iravani R (2010) Potential-function based control of a microgrid in islanded and grid-connected. Modes IEEE Trans Power Syst 25(4):1883–1891

    Article  Google Scholar 

  2. Rocabert J, Luna A, Blaabjerg F, Rodríguez P (2012) Control of power converters in AC microgrids. IEEE Trans Power Electron 27(11):4734–4749

    Article  Google Scholar 

  3. Zhong Q (2013) Robust droop controller for accurate proportional load sharing among inverters operated in parallel. IEEE Trans Ind Electron 60(4):1281–1290

    Article  Google Scholar 

  4. Lopes JAP, Moreira CL, Madureira AG (2006) Defining control strategies for microgrids islanded operation. IEEE Trans Power Syst 21(2):916–924

    Article  Google Scholar 

  5. Guerrero JM, Vasquez JC, Matas J, Castilla M, Miret J (2011) Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans Ind Electron 58(1):158–172

    Article  Google Scholar 

  6. Mohamed Y, El-Saadany EF (2008) Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans Power Electron 23(6):2806–2816

    Article  Google Scholar 

  7. Nutkani IU, Loh PC, Blaabjerg F (2014) Droop scheme with consideration of operating costs. IEEE Trans Power Electron 29(3):1047–1052

    Article  Google Scholar 

  8. Vandoorn TL, Vasquez JC, De Kooning J, Guerrero JM, Vandevelde L (2013) Microgrids: hierarchical control and an overview of the control and reserve management strategies. IEEE Ind Electron Mag 7(4):42–55

    Article  Google Scholar 

  9. Guerrero JM, Garciadevicuna L, Matas J, Castilla M, Miret J (2005) Output impedance design of parallel-connected UPS inverters with wireless load-sharing control. IEEE Trans Ind Electron 52(4):1126–1135

    Article  Google Scholar 

  10. Mahmood H, Michaelson D, Jiang J (2015) Reactive power sharing in islanded microgrids using adaptive voltage droop control. IEEE Trans Smart Grid 6(6):3052–3060

    Article  Google Scholar 

  11. Lee C, Chu C, Cheng P (2013) A new droop control method for the autonomous operation of distributed energy resource interface converters. IEEE Trans Power Electron 28(4):1980–1993

    Article  Google Scholar 

  12. Bouzid AEM, Sicard P, Chaoui H, Cheriti A, Sechilariu M, Guerrero JM (2019) A novel decoupled trigonometric saturated droop controller for power sharing in islanded low-voltage microgrids. Electr Power Syst Res 168:146–161

    Article  Google Scholar 

  13. Tuyen ND, Fujita G, Funabashi T, Nomura M (2017) Analysis of transient-to-island mode of power electronic interface with conventional dq-current controller and proposed droop-based controller. Electr Eng 99(1):47–57

    Article  Google Scholar 

  14. Li YW, Kao CN (2009) An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid. IEEE Trans Power Electron 24(12):2977–2988

    Article  Google Scholar 

  15. Moslemi R, Mohammadpour J (2015) Accurate reactive power control of autonomous microgrids using an adaptive virtual inductance loop. Electr Power Syst Res 129:142–149

    Article  Google Scholar 

  16. Zandi F, Fani B, Sadeghkhani I, Orakzadeh A (2018) Adaptive complex virtual impedance control scheme for accurate reactive power sharing of inverter interfaced autonomous microgrids. IET Gener Transm Distrib 12(22):6021–6032

    Article  Google Scholar 

  17. Huang S, Luo J (2018) Accurate power sharing in proportion for parallel connected inverters by reconstructing inverter output impedance. J Power Electron 18(6):1751–1759

    Google Scholar 

  18. Hoang TV, Lee H (2018) An adaptive virtual impedance control scheme to eliminate the reactive-power-sharing errors in an islanding meshed microgrid. IEEE J Emerg Sel Topics Power Electron 6(2):966–976

    Article  Google Scholar 

  19. He J, Li YW (2012) An Enhanced Microgrid Load Demand Sharing Strategy. IEEE Trans Power Electron 27(9):3984–3995

    Article  Google Scholar 

  20. Subhashree C, Pritam B, Kumar RP (2018) Robust dynamic fuzzy-based enhanced vpd/fqb controller for load sharing in microgrid with distributed generators. Electr Eng 100(4):2457–2472

    Article  Google Scholar 

  21. Vasquez JC, Guerrero JM, Luna A, Rodriguez P, Teodorescu R (2009) Adaptive droop control applied to voltage-source inverters operating in grid-connected and islanded modes. IEEE Trans Ind Electron 56(10):4088–4096

    Article  Google Scholar 

  22. Shafiee Q, Guerrero JM, Vasquez JC (2013) Distributed secondary control for islanded microgrids—a novel approach. IEEE Trans Power Electron 29(2):1018–1031

    Article  Google Scholar 

  23. Han H, Liu Y, Sun Y, Su M, Guerrero JM (2015) An improved droop control strategy for reactive power sharing in islanded microgrid. IEEE Trans Power Electron 30(6):3133–3141

    Article  Google Scholar 

  24. Sao CK, Lehn PW (2005) Autonomous load sharing of voltage source converters. IEEE Trans Power Delivery 20(2):1009–1016

    Article  Google Scholar 

  25. Wang L, Guo XQ, Gu HR, Wu WY, Guerrero JM (2012) Precise modeling based on dynamic phasors for droop-controlled parallel-connected inverters. In: IEEE international symposium on industrial electronics, pp 475–480

Download references

Acknowledgements

The project was financially supported by Science and Technology Project of State Grid Corporation of China (2019YF-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiying Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Yao, R., Zhai, X. et al. An adaptive compensation droop control strategy for reactive power sharing in islanded microgrid. Electr Eng 102, 267–278 (2020). https://doi.org/10.1007/s00202-019-00870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00870-1

Keywords

Navigation