Skip to main content
Log in

Validation of single-phase transformer model for ferroresonance analysis

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The validation of power system component models for transient analysis implies the use of data recorded from either field measurements or laboratory tests. This task can be particularly difficult when the transient process is quite nonlinear, as it occurs in ferroresonance phenomena. Up-to-date research has proved that the \({\uppi }\) model can be more accurate than the classical T model for representing the transient response of transformers with a high level of saturation. This paper proposes a new technique for representing and implementing hysteresis in low-frequency transformer models using the \({\uppi }\) approach. The ultimate goal is to validate the addition of hysteresis effects in the \({\uppi }\) model for single-phase transformer representation in ferroresonance studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Martinez-Velasco JA, Mork BA (2005) Transformer modeling for low- and mid-frequency transients—a review. IEEE Trans Power Deliv 20(2):1625–1632

    Article  Google Scholar 

  2. de León F, Gómez P, Martinez-Velasco JA, Rioual M (2009) Transformers. In: Martinez-Velasco JA (ed) Power system transients. Parameter determination. CRC Press, Boca Raton

    Google Scholar 

  3. Moses PS, Masoum MAS, Toliyat HA (2010) Dynamic modeling of three-phase asymmetric power transformers with magnetic hysteresis: no-load and inrush conditions. IEEE Trans Energy Convers 25(4):1040–1047

    Article  Google Scholar 

  4. Chiesa N, Høidalen HK (2007) Modeling of nonlinear and hysteretic iron-core inductors in ATP. In: European EMTP-ATP Conference 1

  5. Cherry EC (1949) The duality between interlinked electric and magnetic circuits and the formation of transformer equivalent circuits. Proc Phys Soc Sect B 62:101–111

    Article  Google Scholar 

  6. Slemon GR (1953) Equivalent circuits for transformers and machines including non-linear effects. Proc IEE-Part IV Inst Monogr 100(1):129–143

    Google Scholar 

  7. de Leon F, Farazmand A, Joseph P (2012) Comparing the T and \({\uppi }\) equivalent circuits for the calculation of transformer inrush currents. IEEE Trans Power Deliv 27(4):2390–2398

    Article  Google Scholar 

  8. Azebi S, Farazmand A, Murali BP, de Leon F (2013) A comparative study on \({\uppi }\) and T equivalent models for the analysis of transformer ferroresonance. IEEE Trans Power Deliv 28(1):526–528

    Google Scholar 

  9. Corea-Araujo JA, Gonzalez-Molina F, Martinez JA, Barrado-Rodrigo JA, Guasch-Pesquer L (2015) Single-phase transformer model validation for ferroresonance analysis including hysteresis. In: IEEE PES General Meeting, pp 1–5

  10. IEEE Std C57.12.90-2010 (Revision of IEEE Std C57.12.90-2006), Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers

  11. IEEE Std \(\text{C}57.12.91^{{\rm TM}}\)-2011 (Revision of IEEE Std C57.12.91-2001), IEEE Standard Test Code for Dry-Type Distribution and Power Transformers

  12. IEC 60076-1, Power transformers—Part 1: General

  13. IEEE Std 393-1991, Test Procedures for Magnetic Cores

  14. ASTM Standard, Test Method for Alternating Current Magnetic Properties of Materials Using the Wattmeter-Ammeter-Voltmeter Method, 100 to 10000 Hz and 25-cm Epstein Frame

  15. Guerra FCF, Mota WS (2007) Magnetic core model. IET Sci Meas Technol 1(3):145–151

    Article  Google Scholar 

  16. Jiles DC (1992) A self consistent generalized model for the calculation of minor loop excursions in the theory of hysteresis. IEEE Trans Magn 28(5):2602–2604

    Article  Google Scholar 

  17. Jiles DC, Atherton DL (1986) Theory of ferromagnetic hysteresis. J Magn Magn Mater 61(1):48–60

    Article  Google Scholar 

  18. Moses PS, Masoum MAS, Toliyat HA (2011) Impact of hysteresis and magnetic couplings on the stability domain of ferrorresonance in asymmetric three-phase three-leg transformers. IEEE Trans Energy Convers 26(2):581–592

    Article  Google Scholar 

  19. Moses PS, Masoum MAS (2011) Modeling and analysis of the suppression of ferroresonance in nonlinear three-phase three-leg transformers. In: IEEE PES General Meeting, pp 1–6

  20. Rezaei-Zare A, Iravani R (2010) On the transformer core dynamic behavior during electromagnetic transients. IEEE Trans Power Deliv 25(3):1606–1619

    Article  Google Scholar 

  21. Rezaei-Zare A, Iravani R, Sanaye-Pasand M, Mohseni H, Farhangi S (2008) An accurate hysteresis model for ferroresonance analysis of a transformer. IEEE Trans Power Deliv 23(3):1448–1456

    Article  Google Scholar 

  22. Talukdar SR, Bailey JR (1976) Hysteresis model for system studies. IEEE Trans Power Appar Syst 95(4):1429–1434

    Article  Google Scholar 

  23. Gaudreau A, Picher P, Bolduc L, Coutu A (2002) No-load losses in transformer under overexcitation/inrush-current conditions: tests and a new model. IEEE Trans Power Deliv 17(4):1009–1017

    Article  Google Scholar 

  24. Walling RA, Barker KD, Compton TM, Zimmerman LE (1993) Ferroresonant overvoltages in grounded wye-wye padmount transformers with low-loss silicon steel cores. IEEE Trans Power Deliv 8(3):1647–1660

    Article  Google Scholar 

  25. Martinez JA, Walling R, Mork B, Martin-Arnedo J, Durbak D (2005) Parameter determination for modeling systems transients. Part III: Transformers. IEEE Trans Power Deliv 20(3):2051–2062

    Article  Google Scholar 

  26. Jiles DC, Thoelke JB, Devine MK (1992) Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis. IEEE Trans Magn 28(1):27–35

    Article  Google Scholar 

  27. Rezaei-Zare A, Iravani R, Sanaye-Pasand M (2009) Impacts of transformer core hysteresis formation on stability domain of ferroresonance modes. IEEE Trans Power Deliv 24(1):177–186

    Article  Google Scholar 

  28. Mayergoyz D (2003) Mathematical models of hysteresis and their applications. Elsevier, New York

    Google Scholar 

  29. Marti JR, Soudack AC (1991) Ferroresonance in power systems: fundamental solutions. IEE Proc C Gener. Transm. Distrib. 138(4):321–329

    Article  Google Scholar 

  30. Jacobson DAN, Lehn PW, Menzies RW (2002) Stability domain calculations of period-1 ferroresonance in a nonlinear resonant circuit. IEEE Trans Power Deliv. 17(3):865–871

    Article  Google Scholar 

  31. Moradi M, Gholami A (2011) Harmonic balance based stability domain analysis of period-1 ferroresonance. Electr. Power Compon. Syst. 39(12):1315–1328

    Article  Google Scholar 

  32. Mozaffari S (1996) Chaotic ferroresonance in power transformers. Dissertation, University of British Columbia

  33. Lin CE, Wei JB, Huang CL, Huang CJ (1989) A new method for representation of hysteresis loops. IEEE Trans Power Deliv 4(1):413–420

    Article  Google Scholar 

  34. Lin CE, Wei JB, Huang CL, Huang CJ (1989) New model for transformer saturation characteristics by including hysteresis loops. IEEE Trans Magn. 25(3):2706–2712

    Article  Google Scholar 

  35. Canadian/American EMTP User Group (2014) ATP Rule Book, Portland, Oregon, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier A. Corea-Araujo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corea-Araujo, J.A., Martinez-Velasco, J.A., González-Molina, F. et al. Validation of single-phase transformer model for ferroresonance analysis. Electr Eng 100, 1339–1349 (2018). https://doi.org/10.1007/s00202-017-0594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0594-3

Keywords

Navigation