Skip to main content

Advertisement

Log in

Variable-speed PM synchronous motors with ferrite excitation

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The standard motor for variable-speed main drives is the induction motor (IM). In comparison to synchronous machines (SYM), induction motors show the disadvantage of additional ohmic losses in the rotor. Therefore, especially low-power induction motors are not able to reach energy efficiency levels as high as IE4. The transition of motor technology from induction motors to synchronous motors with ferrite excitation provides the opportunity to increase motor efficiency without using expensive rare-earth magnets. Therefore, this paper deals with the steady-state modeling, simulation and design of PM synchronous motors with ferrite excitation in respect of reaching the highest possible motor efficiency. Due to the comparatively poor magnetic parameters of the ferrite magnet, a motor design using the flux concentration effect has to be used. An analytical approach based on a magnetic network is developed to describe the steady-state operating behavior of the ferrite excited PM synchronous motor. The non-linear network equations are solved by applying the Newton-Raphson Method. Due to short calculation times and a high flexibility in respect of the design of a whole product series, the analytical approach is preferred to a numerical approach. To validate the simulation results, a prototype is designed based on a fundamental induction motor. Finally, the test of the prototype in laboratory allows a comparison between simulation and measurement as well as between ferrite excited PM synchronous motor and induction motor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Area

\(B_r\) :

Remanent flux density

\(B_\delta \) :

Air gap flux density

\(B_{\delta ,fw}\) :

Air gap flux density (fundamental wave)

d :

Thickness of body

\(i_{d,q}\) :

Stator current in d- or q-axis

\(I_1\) :

Stator current (rms)

\(l_{ax}\) :

Axial length

\(L_{1,\sigma }\) :

Stator leakage inductance

M :

Torque

\(N_1\) :

Number of stator slots

p :

Number of fundamental pole pairs

\(P_{core}\) :

Core loss

\(P_{cu1}\) :

Stator copper loss

\(P_{fr}\) :

Frictional loss

\(P_{mech}\) :

Output power

\(R_1\) :

Stator resistance

\(R_m\) :

Magnetic resistance

\(T_W\) :

Winding temperature

u :

Voltage

\(V_m\) :

Magnetic voltage source

\(w_1\) :

Number of turns per phase

\(x_{1,2}\) :

Stator or rotor coordinate

\(\beta _{el}\) :

Current angle

\(\delta _{geo}\) :

Air gap width

\(\eta \) :

Efficiency

\(\varTheta \) :

Magnetomotive force

\(\mu \) :

Permeability

\(\xi _p\) :

Fundamental winding factor

\(\tau _p\) :

Pole pitch

\(\phi _{h}\) :

Main flux

\(\varPhi \) :

Flux

\(\psi _{d,q}\) :

Flux linkage in d- or q-axis

\(\psi _{h}\) :

Main flux linkage

\(\omega _{el}\) :

Electric angular velocity

References

  1. Volkrodt Wolfgang (1966) Der SIEMOSYN-Motor, ein Synchronmotor mit Erregung durch Dauermagnete. Siemens Zeitschrift 40:

  2. Volkrodt Wolfgang (1976) Ferritmagneterregung bei größeren elektrischen Maschinen. Siemens Zeitschrift 49:

  3. Ooi S, Morimoto S, Sanada M, Inoue Y (2011) Performance evaluation of a high power density PMASynRM with ferrite magnets. Energy Conversion Congress and Exposition

  4. Binder Andreas (2012) Elektrische Maschinen und Antriebe-Grundlagen. Springer-Verlag, Betriebsverhalten

    Book  Google Scholar 

  5. Franz Moeller (2005) Grundlagen der Elektrotechnik. Teubner Verlag, 20. Auflage

  6. Markos Papageorgiou (2012) Optimierung - Statische, dynamische, stochastische Verfahren für die Anwendung, Springer Vieweg, 3. Auflage

  7. Gieras, Jacek F (2010) Permanent magnet motor technology - Design and Applications. Crc Pr Inc, 3. Auflage

  8. Germar Müller, Karl Vogt, Bernd Ponick (2008) Berechnung elektrischer Maschinen. Wiley-VCH Verlag, 6. Auflage

  9. Reinlein M (2013) Systematic error of analytical iron loss approaches in electrical machines. Innovative Klein- und Mikroantriebstechnik, Nürnberg

  10. Rettinger F (2016) Simulation und Optimierung des Betriebsverhaltens von hocheffizienten PM-Synchronmotoren in Ferrittechnik Modellierung. Shaker Verlag, Germany

    Google Scholar 

  11. Christian, Lehrmann (2006) Temperaturvorausberechnung an oberflächengekühlten Asynchronmotoren. Bulletin SEV/AES, Heft 24/25

  12. Rettinger F, Huth G (2015) Hocheffiziente PM Synchronmotoren in Ferrittechnik. VDI Berichte 2268 / Antriebssysteme 2015, VDI Verlag

  13. Deutsches Patent- und Markenamt; Huth G, Rettinger F (2015) DE102013218769A1. Offenlegungsschrift

  14. Deutsches Patent- und Markenamt; Huth G, Rettinger F (2015) DE102013218829A1. Offenlegungsschrift

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Huth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rettinger, F., Huth, G. Variable-speed PM synchronous motors with ferrite excitation. Electr Eng 99, 639–648 (2017). https://doi.org/10.1007/s00202-016-0393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-016-0393-2

Keywords

Navigation