Skip to main content
Log in

A comparison of unrestricted dynamic Gröbner Basis algorithms

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Dynamic Gröbner Basis algorithms aim to obtain small reduced Gröbner Bases in terms of number of polynomials and monomials. Dynamic algorithms allowing previous leading monomials to change during the execution, called unrestricted algorithms, are underexplored in the literature and the only previous unrestricted algorithm was not implemented. In this paper, we introduce a definition of neighborhoods for monomial orderings, prove it is well-behaved with respect to the commonly used Hilbert heuristic, propose new unrestricted algorithms based on these neighborhoods and compare them experimentally to some previous dynamic algorithms. Our results show that simple unrestricted algorithms based on random sampling often lead to small output bases containing polynomials of low degree, with little overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Caboara, M.: A Dynamic algorithm for Gröbner basis computation. In: Proceedings of the 1993 International Symposium on Symbolic and Algebraic Computation, pp. 275–283 (1993)

  2. Caboara, M., Perry, J.: Reducing the size and number of linear programs in a dynamic Gröbner basis algorithm. Appl. Algebra Eng. Commun. Comput. 25(1–2), 99–117 (2014). https://doi.org/10.1007/s00200-014-0216-5

    Article  MATH  Google Scholar 

  3. Collart, S., Kalkbrener, M., Mall, D.: Converting bases with the Gröbner walk. J. Symb. Comput. (1997). https://doi.org/10.1006/jsco.1996.0145

    Article  MATH  Google Scholar 

  4. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Springer, Berlin (2005). https://doi.org/10.1007/b138611

    Book  MATH  Google Scholar 

  5. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 4th edn. Springer, Berlin (2015)

    Book  Google Scholar 

  6. Eder, C.: Singular benchmarks. https://github.com/ederc/singular-benchmarks (2018)

  7. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, New York (1995). https://doi.org/10.1090/S0273-0979-96-00662-3

    Book  MATH  Google Scholar 

  8. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139(1), 61–88 (1999)

    Article  MathSciNet  Google Scholar 

  9. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proceedings of the 2002 International symposium on Symbolic and Algebraic Computation—ISSAC ’02 pp. 75–83 (2002). https://doi.org/10.1145/780506.780516

  10. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)

    Article  Google Scholar 

  11. Faugère, J.C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE) cryptosystems using Gröbner Bases. In: Advances in Cryptology-CRYPTO 2003, pp. 44–60. Springer (2003). https://doi.org/10.1007/978-3-540-45146-4_3

  12. Gebauer, R., Möller, H.M.: On an installation of Buchberger’s algorithm. J. Symb. Comput. (1988). https://doi.org/10.1016/S0747-7171(88)80048-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Giovini, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C.: “One sugar cube, please” or selection strategies in the Buchberger algorithm. In: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation—ISSAC ’91 (1991). https://doi.org/10.1145/120694.120701

  14. Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: computational complexity and application to Gröbner Bases. SIAM J. Discrete Math. 6(2), 246–269 (1993)

    Article  MathSciNet  Google Scholar 

  15. Hashemi, A., Talaashrafi, D.: A note on dynamic Gröbner Bases computation. In: International Workshop on Computer Algebra in Scientific Computing, pp. 276–288. Springer (2016). https://doi.org/10.1007/978-3-540-75187-8

  16. Langeloh, G.M.: Unrestricted dynamic Gröbner basis algorithms. Master’s thesis, Universidade Federal do Rio Grande do Sul (2019)

  17. Perry, J.: Exploring the dynamic Buchberger algorithm. In: Proceedings of the 2017 International Symposium on Symbolic and Algebraic Computation, pp. 365–372 (2017)

  18. Robbiano, L.: Term orderings on the polynomial ring. In: European Conference on Computer Algebra, pp. 513–517. Springer, Berlin (1985). https://doi.org/10.1007/3-540-15984-3_321

  19. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.3) (2018)

  20. Thomas, R.R.: Gröbner Bases in integer programming. Handbook of Combinatorial Optimization pp. 533–572 (1998). https://doi.org/10.1007/978-1-4613-0303-9_8

Download references

Acknowledgements

The author would like to thank Marcus Ritt and John Perry for many relevant discussions on the subject and the anonymous referees for their suggestions. This work was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and by Conselho Nacional de Desenvolvimento Científico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Mattos Langeloh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langeloh, G.M. A comparison of unrestricted dynamic Gröbner Basis algorithms. AAECC 31, 389–409 (2020). https://doi.org/10.1007/s00200-020-00449-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-020-00449-5

Keywords

Mathematics Subject Classification

Navigation