Skip to main content
Log in

Greedy construction of DNA codes and new bounds

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper, we construct linear codes over \({\mathbb {Z}}_4\) with bounded GC-content. The codes are obtained using a greedy algorithm over \({\mathbb {Z}}_4\). Further, upper and lower bounds are derived for the maximum size DNA codes of length n with constant GC-content w and edit distance d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboluion, N., Smith, D.H., Perkins, S.: Linear and nonlinear constructions of DNA codes with Hamming distance d, constant GC-content and a reverse-complement constraint. Discrete Math. 312(5), 1062–1075 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bishop, M.A., D’Yachkov, A.G., Macula, A.J., Renz, T.E., Rykov, V.V.: Free energy gap and statistical thermodynamic fidelity of DNA codes. J. Comput. Biol. 14(8), 1088–1104 (2007)

    Article  MathSciNet  Google Scholar 

  3. Chee, Y.M., Ling, S.: Improved lower bounds for constant GC-content DNA codes. IEEE Trans. Inf. Theory. 54(1), 391–394 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Church, G.M., Gao, Y., Kosuri, S.: Next-generation digital information storage in DNA. Science 337(6102), 16281628 (2012)

    Article  Google Scholar 

  5. Gaborit, P., King, O.D.: Linear constructions for DNA codes. Theor. Comput. Sci. 334, 99–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeProust, E.M., Sipos, B., Birnery, E.: Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494, 77 (2013)

    Article  Google Scholar 

  7. Grass, R.N., Henckel, R., Puddu, M., Paunescu, D., Stark, W.J.: Robust chemical preservation of digital information on DNA in silica with error-correcting codes. Angew. Chem. Int. Ed. 54, 25522555 (2015)

    Google Scholar 

  8. Guenda, K., Gulliver, T.A., Solé, P.: On cyclic DNA codes. In: Proc. IEEE Int. Symp. Inform. Theory, Istanbul, pp. 121–125 (2013)

  9. Guenda, K., Gulliver, T.A., Sheikholeslam, S.A.: Lexicodes over rings. Des. Codes Cryptogr. 72(3), 749–763 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kiah, H.M., Puleo, G.J., Milenkovic, O.: Codes for DNA sequence profiles (2015). ArXiv preprint arXiv:1502.00517

  11. King, O.D.: Bounds for DNA codes with constant GC-content. Electron. J. Comb. 10, R33 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Kao, M.-Y., Leung, H.C.M., Sun, H., Zhang, Y.: Deterministic polynomial-time algorithms for designing short DNA words. Theor. Comput. Sci. 494, 144–160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial DNA word design. J. Comput. Biol. 8(3), 201–219 (2001)

    Article  MATH  Google Scholar 

  14. Milenkovic, O., Kashyap, N.: On the design of the codes for DNA computing. In: WCC 2005, LNCS, vol. 39, pp. 100–119 (2006)

  15. Montemanni, R., Smith, D.H.: Construction of constant GC-content DNA codes via a variable neighbourhood search algorithm. J. Math. Model. Algorithm 7, 31–326 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ristad, E.S., Yianilos, P.N.: Learning string-edit distance. IEEE Trans. Anal. Mach. Intell. 20(5), 522–532 (1998)

    Article  Google Scholar 

  17. Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittman, M., Davis, R.W.: Quantitative phenotypic analysis of yeast deletion mutant using a highly parallel molecular bar-coding strategy. Nat. Genet. 14, 450–456 (1996)

    Article  Google Scholar 

  18. Smith, D.H., Aboluion, N., Montemanni, H., Perkins, S.: Linear and nonlinear constructions of DNA codes with Hamming distance d and constant GC-content. Discretre Math. 311(13), 1207–1219 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sun, J.: Bounds on edit metric codes with combinatorial DNA constraints. Master’s Thesis, Brock University (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenza Guenda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennenni, N., Guenda, K. & Gulliver, T.A. Greedy construction of DNA codes and new bounds. AAECC 30, 207–216 (2019). https://doi.org/10.1007/s00200-019-00386-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-019-00386-y

Keywords

Navigation