Skip to main content
Log in

Orthogonal matrix and its application in Bloom’s threshold scheme

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

Applying the Gram–Schmidt process (also called Gram–Schmidt orthogonalization) to a matrix \(M\in GL(n, {\mathbb {R}})\), set of \(n\times n\) invertible matrices over the field of real numbers, with the usual inner product gives easily an orthogonal matrix. However, the orthogonality in the vector space \({\mathbb {F}}_{q}^k\), where \({\mathbb {F}}_{q}\) is a binary finite field, is quite tricky as there are non-zero vectors which are orthogonal to themselves. For this reason the computational variants of Gram–Schmidt orthogonalization can fail. This paper presents an algorithm for constructing random orthogonal matrices over binary finite fields. The approach is inspired from the Gram–Schmidt procedure. Since the inverse of orthogonal matrix is easy to compute, the orthogonal matrices are used to construct a proactive variant of Bloom’s threshold secret sharing scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arfken, G.: Gram Schmidt orthogonalization. In: Mathematical Methods for Physicists, 3rd edn, pp. 516–520. Academic Press, Orlando (1985)

  2. Bjorck, A.: Numeric’s of Gram–Schmidt orthogonalization. J. Linear Algebra Appl. 187–198, 297–316 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bjorck, A., Pereyra, V.: Solution of Vandermonde systems of linear equations. Math. Comput. 24, 893–903 (1970)

    Article  MATH  Google Scholar 

  4. Blakley, G.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, vol. 48, pp. 242–268 (1979)

  5. Dickson, L.F.: Linear Groups with an Exposition of the Galois Field Theory. B. G. Teubner, Leipzig (1901)

    MATH  Google Scholar 

  6. Eisinberg, A., Fedel, G.: On the inversion of the Vanermonde matrix. Appl. Math. Comput. 174, 1384–1397 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Golub, G., Vanloan, C.: Matrix Computations, 3rd edn. John Hopkins Univ. Press, Baltimore (1996)

    Google Scholar 

  8. Haupt, J., Bajwa, W.U., Raz, G., Nowak, R.: Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans. Inf. Theory 56(11), 5862–5875 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Herzberg, A., Jarecki, S., Krawczyk, H., Krawczyk, M.: Proactive secret sharing or: how to cope with perpetual leakage. In: Coppersmith D (Eds.) Advances in Cryptology—Crypto ’95, August, Santa Barbara, pp. 339–352 (1995)

  10. Iris, A., Michael, A., Dorian, G.: A linear time matrix key agreement protocol over Small Finite Fields. Appl. Algebra Eng. Commun. Comput. 17(3), 195–203 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Iuon-Chang, L., Chin-Chen, C.: A (t, n) threshpld secret sharing system with efficient identification of cheaters. Comput. Inf. 24, 529–541 (2005)

    MATH  Google Scholar 

  12. Kaufman, I.: The inversion of the Vandermonde matrix and the transformation to the Jordan canonical form. IEEE Trans. Autom. control 14, 774–777 (1969)

    Article  MathSciNet  Google Scholar 

  13. Kothari, S.C.: Generalized linear threshold scheme. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology, CRYPTO 1984. Lecture Notes in Computer Science, vol. 196, pp. 231–241. Springer, Heidelberg, Berlin (1985)

    Google Scholar 

  14. Mac William, J.: Orthogonal matrices over finite fields. Am. Math. Mon. 76(2), 152–164 (1969)

    Article  MathSciNet  Google Scholar 

  15. Ramakrishna, A.V., Prasanna, T.V.N.: Symmetric circulant matrices and publickey cryptography. Int. J. Contemp. Math. Sci. 8(12), 589–593 (2013)

    Article  MathSciNet  Google Scholar 

  16. Shamir, A.: How to share a secret. Commun. ACM 24(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Toorani, M., Falahati, A.: A secure variant of the Hill cipher. In: IEEE Symposium on Computers and Communications 2009, pp. 313–316 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mameri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mameri, A., Aissani, A. Orthogonal matrix and its application in Bloom’s threshold scheme. AAECC 30, 147–160 (2019). https://doi.org/10.1007/s00200-018-0365-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-018-0365-z

Keywords

Mathematics Subject Classification

Navigation