Skip to main content
Log in

CAPM-anomalies: quantitative puzzles

  • Research Article
  • Published:
Economic Theory Aims and scope Submit manuscript

Abstract

The stochastic discount factor is a crucial determinant of the equity premium as well as the cross-sectional distribution of stock returns. This gives rise to the idea that there is a tight link between the equity premium puzzle and cross-sectional asset pricing puzzles. This paper examines similarities between the low-beta premium, the value premium, the small-size premium and the equity premium in a special case of a static consumption-based asset pricing model with constant relative risk aversion and lognormal dividends that can be solved in closed form. The results show that cross-sectional asset pricing puzzles are quantitative puzzles just like the equity premium puzzle: The model generates a premium for stocks with a low beta, a high dividend-price ratio and a small market capitalization but the size of the premium is too small. Furthermore, the size of the premium rises together with the equity premium as the risk aversion coefficient or consumption risk is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This assumption simplifies notation, but is not necessary. The number of firms can be discretized.

  2. Elmiger (2010) documents that the cross section of total dividends follows approximately a lognormal distribution except for the tails of the distribution.

  3. The total number of firms is normalized to one.

  4. Results for \(\mu _{\rho } \ne 1\) can be obtained by scaling \(\mu \), \(\sigma \) and \(\sigma _{\rho }\) accordingly.

  5. The return equals total future dividends divided by the current market capitalization since the asset supply is constant over time in our model.

  6. Reasonable means that aggregate dividend growth and the size of dividend payments across assets lie in the range reported by Chen (2009) and DeAngelo et al. (2004).

  7. Intermediate results are available on request.

  8. A proof for a positive premium in case \(\sigma ^2>0\) can be found in “Appendix.”

  9. The memory of our symbolic calculator does not suffice for an analytical discussion.

References

  • Bansal, R., Yaron, A.: Risks for the long run: a potential resolution of asset pricing puzzles. J. Finance 59(4), 1481–1509 (2004)

    Article  Google Scholar 

  • Banz, R.W.: The relationship between return and market value of common stocks. J. Financ. Econ. 9(1), 3–18 (1981)

    Article  Google Scholar 

  • Barro, R.J.: Rare disasters and asset markets in the twentieth century. Q. J. Econ. 121(3), 823–866 (2006)

    Article  Google Scholar 

  • Basu, S.: Investment performance of common stocks in relation to their price-earnings ratios: a test of the efficient market hypothesis. J. Finance 32(3), 663–682 (1977)

    Article  Google Scholar 

  • Black, F., Jensen, M.C., Scholes, M.: The capital asset pricing model: some empirical tests. In: Jensen, M.C. (ed.) Studies in the Theory of Capital Markets, pp. 79–121. Praeger Publishers Inc., New York (1972)

    Google Scholar 

  • Breeden, D.T.: An intertemporal asset pricing model with stochastic consumption and investment opportunities. J. Financ. Econ. 7(3), 265–296 (1979)

    Article  Google Scholar 

  • Campbell, J.Y., Cochrane, J.H.: By force of habit: a consumption-based explanation of aggregate stock market behavior. J. Polit. Econ. 107(2), 205–251 (1999)

    Article  Google Scholar 

  • Campbell, J., Viceira, L.: Strategic Asset Allocation: Portfolio Choice for Long-Term Investors. Oxford University Press, Oxford (2002)

    Book  Google Scholar 

  • Carhart, M.M.: On persistence in mutual fund performance. J. Finance 52(1), 57–82 (1997)

    Article  Google Scholar 

  • Chen, L.: On the reversal of return and dividend growth predictability: a tale of two periods. J. Financ. Econ. 92(1), 128–151 (2009)

    Article  Google Scholar 

  • Cochrane, J.H., Longstaff, F.A., Santa-Clara, P.: Two trees. Rev. Financ. Stud. 21(1), 347–385 (2008)

    Article  Google Scholar 

  • DeAngelo, H., DeAngelo, L., Skinner, D.J.: Are dividends disappearing? Dividend concentration and the consolidation of earnings. J. Financ. Econ. 72(3), 425–456 (2004)

    Article  Google Scholar 

  • Dittmar, R.F.: Nonlinear pricing kernels, kurtosis preference, and evidence from the cross section of equity returns. J. Finance 57(1), 369–403 (2002)

    Article  Google Scholar 

  • Elmiger, S.: Market selection in an evolutionary market with dividends generated by a percolation model. https://www.ethz.ch/content/dam/ethz/special-interest/mtec/chair-of-entrepreneurial-risks-dam/documents/dissertation/master (2010). Accessed 14 May 2018

  • Fama, E.F., French, K.R.: Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 33(1), 3–56 (1993)

    Article  Google Scholar 

  • Fama, E.F., French, K.R.: The capital asset pricing model: theory and evidence. J. Econ. Perspect. 18(3), 25–46 (2004)

    Article  Google Scholar 

  • Frazzini, A., Pedersen, L.H.: Betting against beta. J. Financ. Econ. 111(1), 1–25 (2014)

    Article  Google Scholar 

  • Herings, P.J.J., Kübler, F.: Approximate CAPM when preferences are CRRA. Comput. Econ. 29(1), 13–31 (2007)

    Article  Google Scholar 

  • Kraus, A., Litzenberger, R.: On the distributional conditions for a consumption-oriented three moment CAPM. J. Finance 38(5), 1381–1391 (1983)

    Article  Google Scholar 

  • Lintner, J.: The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev. Econ. Stat. 47(1), 13–37 (1965)

    Article  Google Scholar 

  • Lucas, R.E.: Asset prices in an exchange economy. Econometrica 46(6), 1429–1445 (1978)

    Article  Google Scholar 

  • Martin, I.: The Lucas orchard. Econometrica 81(1), 55–111 (2013)

    Article  Google Scholar 

  • Mehra, R., Prescott, E.C.: The equity premium: a puzzle. J. Monet. Econ. 15(2), 145–161 (1985)

    Article  Google Scholar 

  • Mossin, J.: Equilibrium in a capital asset market. Econometrica 34(4), 768–783 (1966)

    Article  Google Scholar 

  • Rubinstein, M.: The valuation of uncertain income streams and the pricing of options. Bell J. Econ. 7(2), 407–425 (1976)

    Article  Google Scholar 

  • Sharpe, W.F.: Capital asset prices: a theory of market equilibrium under conditions of risk. J. Finance 19(3), 425–442 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Elmiger.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

I would like to thank Thorsten Hens, Felix Kübler and Bjørn Sandvik for helpful comments and discussions. I am grateful to the Hausdorff Institute for Mathematics in Bonn, where I completed a large part of this work.

Appendix

Appendix

1.1 Derivation of the Expectation

In the proofs, we often encounter expectations of the form \(\mathbf {E}\left[ e^{a\Delta y+b\left( \Delta y\right) ^2}\right] \) with different coefficients a and b and \(\Delta y \sim \mathcal {N} (\mu -y_0,\sigma ^2)\). Here, we show the common derivation of this expectation using the completion of the square method.

$$\begin{aligned} \mathbf {E}\left[ e^{a\Delta y+b(\Delta y )^2}\right]&=\frac{1}{\sigma \sqrt{2\pi }}\int _{-\infty }^{\infty }e^{a\Delta y+b(\Delta y )^2}e^{-\frac{\left( (\Delta y- (\mu -y_0)\right) ^2}{2\sigma ^2}}\mathrm{d}\Delta y\\&=\frac{1}{\sigma \sqrt{2\pi }}\int _{-\infty }^{\infty }e^{-\frac{1}{2}\left( \frac{1}{\sigma ^2}-2b\right) \left( (\Delta y)^2-2\frac{a\sigma ^2+(\mu -y_0)}{1-2b\sigma ^2}\Delta y+\frac{(\mu -y_0)^2}{1-2b\sigma ^2}\right) }\mathrm{d}\Delta y. \end{aligned}$$

We can rewrite this expression as

$$\begin{aligned} \frac{e^{-\frac{1}{2}\left( \frac{1}{\sigma ^2}-2b\right) \left( \frac{(\mu -y_0)^2}{1-2b\sigma ^2}-\left( \frac{a\sigma ^2 +(\mu -y_0)}{1-2b\sigma ^2}\right) ^2\right) }}{\sigma \sqrt{2\pi }}\int _{-\infty }^{\infty }e^{-\frac{1}{2}\left( \frac{1}{\sigma ^2}-2b\right) \left( \Delta y-\frac{a\sigma ^2+(\mu -y_0 )}{1-2b\sigma ^2}\right) ^2}\mathrm{d}\Delta y. \end{aligned}$$

so that the integrand becomes proportional to a normal probability density function with mean \(\frac{a\sigma ^2+(\mu -y_0)}{1-2b\sigma ^2}\) and standard deviation \(\sqrt{\frac{\sigma ^2}{1-2b\sigma ^2}}\). Therefore, the expectation is equal to

$$\begin{aligned} \mathbf {E}\left[ e^{a\Delta y+b(\Delta y )^2}\right]&=\frac{1}{\sqrt{1-2b\sigma ^2}}e^{-\frac{1}{2}\left( \frac{1}{\sigma ^2}-2b\right) \left( \frac{(\mu -y_0)^2}{1-2b\sigma ^2}-\left( \frac{a\sigma ^2 +(\mu -y_0)}{1-2b\sigma ^2}\right) ^2\right) }\nonumber \\&=\frac{1}{\sqrt{1-2b\sigma ^2}}e^{\frac{1}{2\sigma ^2}\frac{\left( a\sigma ^2 +(\mu -y_0)\right) ^2}{1-2b\sigma ^2}-\frac{1}{2\sigma ^2}(\mu -y_0)^2}. \end{aligned}$$
(1)

\(\square \)

Proof of Proposition 1

The price–dividend ratio of an asset of type \(\rho \) is

$$\begin{aligned} \frac{q^{\rho }}{D_0^{\rho }}&=\mathbf {E}\left[ \delta \left( \frac{c_0}{c_1}\right) ^{\gamma }\frac{D_1^{\rho }}{D_0^{\rho }}\right] \\&=\delta \mathbf {E}\left[ e^{-\gamma (y_1-y_0) -\frac{\gamma }{2}\sigma _{\rho }^2 (y_1^2-y_0^2)}e^{\rho (y_1-y_0)}\right] . \end{aligned}$$

To shorten notation, let us define \(\Delta y\equiv y_1-y_0\) and \(\Delta y \sim \mathcal {N}\left( \mu -y_0,\sigma ^2\right) \). The price–dividend ratio then is

$$\begin{aligned} \frac{q^{\rho }}{D_0^{\rho }}&=\delta \mathbf {E}\left[ e^{-\gamma \Delta y -\frac{\gamma }{2}\sigma _{\rho }^2\Delta y (y_1+y_0)}e^{\rho \Delta y}\right] \\&=\delta \mathbf {E}\left[ e^{-\gamma \Delta y -\frac{\gamma }{2}\sigma _{\rho }^2 \left( (\Delta y )^2 +2y_0\Delta y \right) }e^{\rho \Delta y}\right] \\&=\delta \mathbf {E}\left[ e^{(\rho -\gamma -\gamma \sigma _{\rho }^2y_0)\Delta y -\frac{\gamma }{2}\sigma _{\rho }^2 (\Delta y )^2 }\right] . \end{aligned}$$

Using the formula for the expectation (1), we obtain

$$\begin{aligned} \frac{q^{\rho }}{D_0^{\rho }}&= \frac{\delta }{\sqrt{1+\gamma \sigma _{\rho }^2\sigma ^2}}e^{\frac{1}{2\sigma ^2}\frac{\left( (\rho -\gamma -\gamma \sigma _{\rho }^2y_0)\sigma ^2 +(\mu -y_0)\right) ^2}{1+\gamma \sigma _{\rho }^2\sigma ^2}-\frac{1}{2\sigma ^2}(\mu -y_0)^2}. \end{aligned}$$
(2)

\(\square \)

Proof of Proposition 2

The expected return of an asset of type \(\rho \) is

$$\begin{aligned} \mathbf {E}\left[ R^{\rho }\right]&=\mathbf {E}\left[ \frac{D_1^{\rho }}{q^{\rho }}\right] =\frac{\mathbf {E}\left[ e^{\rho \Delta y}\right] D_0^{\rho }}{q^{\rho }}\\&=\frac{\sqrt{1+\gamma \sigma _{\rho }^2\sigma ^2}}{\delta }e^{\rho (\mu -y_0)+\frac{1}{2}\rho ^2 \sigma ^2-\frac{1}{2\sigma ^2}\frac{\left( (\rho -\gamma -\gamma \sigma _{\rho }^2y_0)\sigma ^2 +(\mu -y_0)\right) ^2}{1+\gamma \sigma _{\rho }^2\sigma ^2}+\frac{1}{2\sigma ^2}(\mu -y_0)^2}. \end{aligned}$$

The price–dividend ratio of the market portfolio is

$$\begin{aligned} \frac{q^{M }}{D_0^{M }}&=\mathbf {E}\left[ \delta \left( \frac{c_0}{c_1}\right) ^{\gamma }\frac{D_1^{M }}{D_0^{M }}\right] \\&=\delta \mathbf {E}\left[ e^{(1-\gamma )(y_1-y_0) +\frac{1-\gamma }{2}\sigma _{\rho }^2 (y_1^2-y_0^2)}\right] \\&=\delta \mathbf {E}\left[ e^{(1-\gamma )\Delta y +\frac{1-\gamma }{2}\sigma _{\rho }^2 \Delta y(y_1+y_0)}\right] \\&=\delta \mathbf {E}\left[ e^{(1-\gamma )\Delta y +\frac{1-\gamma }{2}\sigma _{\rho }^2 \left( (\Delta y )^2 +2y_0\Delta y \right) }\right] \\&=\delta \mathbf {E}\left[ e^{(1-\gamma )(1+\sigma _{\rho }^2y_0)\Delta y +\frac{1-\gamma }{2}\sigma _{\rho }^2 (\Delta y )^2 }\right] . \end{aligned}$$

Using the formula for the expectation (1), we obtain

$$\begin{aligned} \frac{q^{M }}{D_0^{M }}&= \frac{\delta }{\sqrt{1-(1-\gamma )\sigma _{\rho }^2\sigma ^2}}e^{\frac{1}{2\sigma ^2}\frac{\left( (1 -\gamma )(1+ \sigma _{\rho }^2y_0)\sigma ^2 +(\mu -y_0)\right) ^2}{1-(1-\gamma )\sigma _{\rho }^2\sigma ^2}-\frac{1}{2\sigma ^2}(\mu -y_0)^2}. \end{aligned}$$
(3)

This step assumes that \(\sigma ^2/\left( 1-\left( 1-\gamma \right) \sigma _{\rho }^2\sigma ^2\right) \) is the variance of a normally distributed random variable, which requires \(\sigma _{\rho }^2\sigma ^2<1\) in case \(\gamma =1\).

Therefore, the expected return on the market portfolio is

$$\begin{aligned} \mathbf {E}\left[ R^{M }\right]&=\mathbf {E}\left[ \frac{D_1^{M }}{q^{M }}\right] \\&=\frac{\mathbf {E}\left[ e^{\Delta y +\frac{1}{2}\sigma _{\rho }^2 (y_1^2-y_0^2)}\right] D_0^{M }}{q^{M }}\\&=\frac{\mathbf {E}\left[ e^{(1+\sigma _{\rho }^2y_0)\Delta y +\frac{1}{2}\sigma _{\rho }^2 (\Delta y )^2 }\right] D_0^{M }}{q^{M }}\\&=\frac{\sqrt{1-(1-\gamma )\sigma _{\rho }^2\sigma ^2}}{\delta \sqrt{1-\sigma _{\rho }^2\sigma ^2}}e^{\frac{1}{2\sigma ^2}\left( \frac{\left( (1+\sigma _{\rho }^2 y_0)\sigma ^2+(\mu -y_0)\right) ^2}{1-\sigma _{\rho }^2\sigma ^2}-\frac{\left( (1-\gamma )(1+\sigma _{\rho }^2y_0)\sigma ^2+(\mu -y_0)\right) ^2}{1-(1-\gamma )\sigma _{\rho }^2 \sigma ^2}\right) }. \end{aligned}$$

Here, we use again the formula for the expectation given in (1) assuming that \(\sigma ^2/(1-\sigma ^2 \sigma _{\rho }^2)\) is the variance of a normal distribution, which requires \(\sigma _{\rho }^2\sigma ^2<1\).

The riskless rate is

$$\begin{aligned} R^f&=\frac{1}{\mathbf {E}\left[ \delta \left( \frac{c_0}{c_1}\right) ^{\gamma }\right] }\\&=\frac{1}{\delta \mathbf {E}\left[ e^{-\gamma (y_1-y_0) -\frac{\gamma }{2}\sigma _{\rho }^2 (y_1^2-y_0^2)}\right] }\\&=\frac{1}{\delta \mathbf {E}\left[ e^{-\gamma \Delta y -\frac{\gamma }{2}\sigma _{\rho }^2 \Delta y(y_1+y_0)}\right] }\\&=\frac{1}{\delta \mathbf {E}\left[ e^{-\gamma \Delta y -\frac{\gamma }{2}\sigma _{\rho }^2 \left( (\Delta y )^2 +2y_0\Delta y \right) }\right] }\\&=\frac{1}{\delta \mathbf {E}\left[ e^{-\gamma (1+\sigma _{\rho }^2y_0)\Delta y -\frac{\gamma }{2}\sigma _{\rho }^2 (\Delta y )^2 }\right] }. \end{aligned}$$

Using the formula for the expectation (1), we obtain

$$\begin{aligned} R^f&= \frac{\sqrt{1+\gamma \sigma _{\rho }^2 \sigma ^2}}{\delta }e^{-\frac{1}{2\sigma ^2}\frac{(-\gamma (1+\sigma _{\rho }^2y_0)\sigma ^2+(\mu -y_0))^2}{1+\gamma \sigma _{\rho }^2 \sigma ^2}+\frac{1}{2\sigma ^2}(\mu -y_0)^2}. \end{aligned}$$

\(\square \)

Proof of Proposition 3

The CAPM beta \(\beta ^{\rho }\) is

$$\begin{aligned} \beta ^{\rho }&=\frac{\text {Cov}\left( R^{\rho }, R^M\right) }{\text {Var}\left( R^M\right) }=\frac{q^M}{q^{\rho }}\frac{\text {Cov}\left( D_1^{\rho },D_1^M\right) }{\text {Var}\left( D_1^M\right) }\\&=\frac{q^M}{q^{\rho }}\frac{\mathbf {E}\left[ e^{(1+\rho )y_1+\frac{1}{2}\sigma _{\rho }^2y_1^2}\right] -\mathbf {E}\left[ e^{\rho y_1}\right] \mathbf {E}\left[ e^{y_1+\frac{1}{2}\sigma _{\rho }^2y_1^2}\right] }{\mathbf {E}\left[ e^{2y_1+\sigma _{\rho }^2y_1^2}\right] -\mathbf {E}\left[ e^{y_1+\frac{1}{2}\sigma _{\rho }^2y_1^2}\right] ^2}\\&=\frac{q^M}{q^{\rho }}e^{(\rho -1)y_0-\frac{1}{2}\sigma _{\rho }^2y_0^2}\frac{\mathbf {E}\left[ e^{(1+\rho +\sigma _{\rho }^2y_0)\Delta y+\frac{1}{2}\sigma _{\rho }^2(\Delta y)^2}\right] -\mathbf {E}\left[ e^{\rho \Delta y}\right] \mathbf {E}\left[ e^{(1+\sigma _{\rho }^2y_0)\Delta y+\frac{1}{2}\sigma _{\rho }^2(\Delta y)^2}\right] }{\mathbf {E}\left[ e^{2(1+\sigma _{\rho }^2y_0)\Delta y+\sigma _{\rho }^2(\Delta y)^2}\right] -\mathbf {E}\left[ e^{(1+\sigma _{\rho }^2y_0)\Delta y+\frac{1}{2}\sigma _{\rho }^2(\Delta y)^2}\right] ^2}. \end{aligned}$$

Using the formula for the expectations (1) and multiplying the numerator and denominator by \(e^{\frac{1}{2\sigma ^2}(\mu -y_0)^2}\), we obtain

$$\begin{aligned} \beta ^{\rho }&=\frac{q^M}{q^{\rho }}e^{(\rho -1)y_0-\frac{1}{2}\sigma _{\rho }^2y_0^2}\frac{\frac{e^{\frac{1}{2\sigma ^2}\frac{\left( (1+\rho +\sigma _{\rho }^2y_0)\sigma ^2+(\mu -y_0)\right) ^2}{1-\sigma _{\rho }^2 \sigma ^2}}}{\sqrt{1-\sigma _{\rho }^2\sigma ^2}}-\frac{e^{\rho (\mu -y_0)+\frac{1}{2}\rho ^2 \sigma ^2 +\frac{1}{2\sigma ^2 }\frac{\left( (1+\sigma _{\rho }^2y_0)\sigma ^2+(\mu -y_0)\right) ^2}{1-\sigma _{\rho }^2 \sigma ^2}}}{\sqrt{1-\sigma _{\rho }^2\sigma ^2}}}{\frac{e^{\frac{1}{2\sigma ^2}\frac{\left( 2(1+\sigma _{\rho }^2 y_0)\sigma ^2+(\mu -y_0)\right) ^2}{1-2\sigma _{\rho }^2\sigma ^2}}}{\sqrt{1-2\sigma _{\rho }^2\sigma ^2}}-\frac{e^{\frac{1}{\sigma ^2}\frac{\left( (1+\sigma _{\rho }^2y_0)\sigma ^2+(\mu -y_0)\right) ^2}{1-\sigma _{\rho }^2\sigma ^2}-\frac{1}{2\sigma ^2}(\mu -y_0)^2}}{1-\sigma _{\rho }^2\sigma ^2}}. \end{aligned}$$

The assumption \(\sigma _{\rho }^2 \sigma ^2<1/2\) allows us to interpret \(\sigma ^2/(1-\sigma _{\rho }^2\sigma ^2)\) as well as \(\sigma ^2/(1-2\sigma _{\rho }^2 \sigma ^2)\) as variances of a normal distribution and to apply (1).

Using the formulas for the price–dividend ratio (2) and (3), we obtain

$$\begin{aligned} \beta ^{\rho }&=\frac{\frac{e^{\frac{1}{2\sigma ^2}\frac{\left( (1-\gamma )(1+\sigma _{\rho }^2 y_0)\sigma ^2+(\mu -y_0)\right) ^2}{1-(1-\gamma )\sigma _{\rho }^2\sigma ^2}}}{\sqrt{1-(1-\gamma )\sigma _{\rho }^2\sigma ^2}}\left( \frac{e^{\frac{1}{2\sigma ^2}\frac{\left( (1+\rho +\sigma _{\rho }^2y_0)\sigma ^2+(\mu -y_0)\right) ^2}{1-\sigma _{\rho }^2 \sigma ^2}}}{\sqrt{1-\sigma _{\rho }^2\sigma ^2}}-\frac{e^{\rho (\mu -y_0)+\frac{1}{2}\rho ^2 \sigma ^2 +\frac{1}{2\sigma ^2 }\frac{\left( (1+\sigma _{\rho }^2y_0)\sigma ^2+(\mu -y_0)\right) ^2}{1-\sigma _{\rho }^2 \sigma ^2}}}{\sqrt{1-\sigma _{\rho }^2\sigma ^2}}\right) }{\frac{e^{\frac{1}{2\sigma ^2}\frac{\left( (\rho -\gamma -\gamma \sigma _{\rho }^2y_0)\sigma ^2+(\mu -y_0)\right) ^2}{1+\gamma \sigma _{\rho }^2 \sigma ^2}}}{\sqrt{1+\gamma \sigma _{\rho }^2\sigma ^2}}\left( \frac{e^{\frac{1}{2\sigma ^2}\frac{\left( 2(1+\sigma _{\rho }^2 y_0)\sigma ^2+(\mu -y_0)\right) ^2}{1-2\sigma _{\rho }^2\sigma ^2}}}{\sqrt{1-2\sigma _{\rho }^2\sigma ^2}}-\frac{e^{\frac{1}{\sigma ^2}\frac{\left( (1+\sigma _{\rho }^2y_0)\sigma ^2+(\mu -y_0)\right) ^2}{1-\sigma _{\rho }^2\sigma ^2}-\frac{1}{2\sigma ^2}(\mu -y_0)^2}}{1-\sigma _{\rho }^2\sigma ^2}\right) }. \end{aligned}$$

\(\square \)

1.2 Positivity of the equity premium

In order to show that the equity premium is positive, we show that the ratio of the expected market return and the riskless rate is greater than one. Dividing the expression of the expected market return by the expression of the riskless rate as given in Proposition 2, we obtain

$$\begin{aligned} \frac{\mathbf {E}[R^M]}{R^f}=\frac{\sqrt{1+(\gamma -1)\sigma _\rho ^2\sigma ^2}}{\sqrt{1+\gamma \sigma _{\rho }^2\sigma ^2}\sqrt{1-\sigma _{\rho }^2\sigma ^2}}e^{-\frac{\left( \left( \gamma -1\right) \sigma ^2-\mu \right) ^2}{2\left( \left( \gamma -1\right) \sigma _{\rho }^2\sigma ^2+1\right) \sigma ^2}+\frac{(\gamma \sigma ^2-\mu )^2}{2(\gamma \sigma _{\rho }^2\sigma ^2+1)\sigma ^2}+\frac{(\sigma ^2+\mu )^2}{2(1-\sigma _{\rho }^2\sigma ^2)\sigma ^2}-\frac{\mu ^2}{2\sigma ^2}}. \end{aligned}$$

First, we note that \(\sqrt{1+(\gamma -1)\sigma _\rho ^2\sigma ^2}\ge \sqrt{(1+\gamma \sigma _{\rho }^2\sigma ^2)(1-\sigma _{\rho }^2\sigma ^2)}\). Second, we calculate the derivative of the exponent with respect to \(\sigma ^2\):

$$\begin{aligned} \frac{(\mu \sigma _{\rho }^2+1)^2}{2(1-\sigma _{\rho }^2\sigma ^2)^2}+\frac{(2\gamma (\gamma -1)\sigma _{\rho }^2 \sigma ^2+2\gamma -1)(\mu \sigma _{\rho }^2+1)^2}{2(1+\gamma \sigma _{\rho }^2\sigma ^2)^2\left( 1+(\gamma -1)\sigma _{\rho }^2\sigma ^2 \right) ^2}, \end{aligned}$$

which is positive because all squared terms are positive and \(2\gamma (\gamma -1)\sigma _{\rho }^2\sigma ^2\) and \(2\gamma -1\) are nonnegative for \(\gamma \ge 1\). Thus, the exponent of the exponential function is increasing in \(\sigma \) and minimal for \(\sigma \rightarrow 0\), where it takes the value zero as can be calculated using L’Hopital’s rule. The exponential function therefore takes only values greater than one unless \(\sigma =0\). \(\square \)

Proof of Proposition 4

The CCAPM beta \(\beta _\mathrm{con} ^{\rho }\) is

$$\begin{aligned} \beta _\mathrm{con}^{\rho }&=\frac{\text {Cov}\left( R^{\rho },(R^M)^{-\gamma }\right) }{\text {Cov}\left( R^M,(R^M)^{-\gamma }\right) }=\frac{q^M}{q^{\rho }}\frac{\text {Cov}\left( D_1^{\rho },\left( D_1^M\right) ^{-\gamma }\right) }{\text {Cov}\left( D_1^M,\left( D_1^M\right) ^{-\gamma }\right) }\\&=\frac{q^M}{q^{\rho }}\frac{\mathbf {E}\left[ e^{(\rho -\gamma )y_1-\frac{\gamma }{2}\sigma _{\rho }^2y_1^2}\right] -\mathbf {E}\left[ e^{\rho y_1}\right] \mathbf {E}\left[ e^{-\gamma y_1- \frac{\gamma }{2}\sigma _{\rho }^2y_1^2}\right] }{\mathbf {E}\left[ e^{(1-\gamma )y_1+\frac{1-\gamma }{2}\sigma _{\rho }^2y_1^2}\right] -\mathbf {E}\left[ e^{y_1+\frac{1}{2}\sigma _{\rho }^2y_1^2}\right] \mathbf {E}\left[ e^{-\gamma y_1-\frac{\gamma }{2}\sigma _{\rho }^2y_1^2}\right] }\\&=\frac{q^M}{q^{\rho }}\frac{e^{(\rho -1)y_0-\frac{1}{2}\sigma _{\rho }^2y_0^2}\left( \mathbf {E}\left[ e^{(\rho -\gamma \eta )\Delta y-\frac{\gamma }{2}\sigma _{\rho }^2(\Delta y)^2}\right] -\mathbf {E}\left[ e^{\rho \Delta y}\right] \mathbf {E}\left[ e^{-\gamma \eta \Delta y-\frac{\gamma }{2}\sigma _{\rho }^2(\Delta y)^2}\right] \right) }{\mathbf {E}\left[ e^{(1-\gamma )\eta \Delta y+\frac{1-\gamma }{2}\sigma _{\rho }^2(\Delta y)^2}\right] -\mathbf {E}\left[ e^{\eta \Delta y+\frac{1}{2}\sigma _{\rho }^2(\Delta y)^2}\right] \mathbf {E}\left[ e^{-\gamma \eta \Delta y-\frac{\gamma }{2}\sigma _{\rho }^2(\Delta y)^2}\right] }, \end{aligned}$$

where \(\eta \) is defined as \(\eta \equiv 1+\sigma _{\rho }^2y_0\). Using the formula for the expectations (1) and multiplying the numerator and denominator by \(e^{\frac{1}{2\sigma ^2}(\mu -y_0)^2}\), we obtain

$$\begin{aligned} \beta _\mathrm{con}^{\rho }&=\frac{q^M}{q^{\rho }}\frac{e^{(\rho -1)y_0-\frac{1}{2}\sigma _{\rho }^2y_0^2}\left( \frac{e^{\frac{1}{2\sigma ^2}\frac{\left( (\rho -\gamma \eta )\sigma ^2+(\mu -y_0)\right) ^2}{1+\gamma \sigma _{\rho }^2 \sigma ^2}}}{\sqrt{1+\gamma \sigma _{\rho }^2\sigma ^2}}-\frac{e^{\rho (\mu -y_0)+\frac{1}{2}\rho ^2 \sigma ^2 +\frac{1}{2\sigma ^2 }\frac{\left( -\gamma \eta \sigma ^2+(\mu -y_0)\right) ^2}{1+\gamma \sigma _{\rho }^2 \sigma ^2}}}{\sqrt{1+\gamma \sigma _{\rho }^2\sigma ^2}}\right) }{\frac{e^{\frac{1}{2\sigma ^2}\frac{\left( (1-\gamma )\eta \sigma ^2+(\mu -y_0)\right) ^2}{1-(1-\gamma )\sigma _{\rho }^2\sigma ^2}}}{\sqrt{1-(1-\gamma )\sigma _{\rho }^2\sigma ^2}}-\frac{e^{\frac{1}{2\sigma ^2}\frac{\left( \eta \sigma ^2+(\mu -y_0)\right) ^2}{1-\sigma _{\rho }^2\sigma ^2}+\frac{1}{2\sigma ^2}\frac{\left( -\gamma \eta \sigma ^2+(\mu -y_0)\right) ^2}{1+\gamma \sigma _{\rho }^2\sigma ^2}-\frac{1}{2\sigma ^2}(\mu -y_0)^2}}{\sqrt{1-\sigma _{\rho }^2\sigma ^2}\sqrt{1+\gamma \sigma _{\rho }^2\sigma ^2}}}. \end{aligned}$$

Using the formulas for the price–dividend ratio (2) and (3), we obtain

$$\begin{aligned} \beta _\mathrm{con}^{\rho }&=\frac{\frac{e^{\frac{1}{2\sigma ^2}\frac{\left( (1-\gamma )\eta \sigma ^2+(\mu -y_0)\right) ^2}{1-(1-\gamma )\sigma _{\rho }^2\sigma ^2}}}{\sqrt{1-(1-\gamma )\sigma _{\rho }^2\sigma ^2}}\left( \frac{e^{\frac{1}{2\sigma ^2}\frac{\left( (\rho -\gamma \eta )\sigma ^2+(\mu -y_0)\right) ^2}{1+\gamma \sigma _{\rho }^2 \sigma ^2}+\frac{1}{2\sigma ^2}(\mu -y_0)^2}}{\sqrt{1+\gamma \sigma _{\rho }^2\sigma ^2}}-\frac{e^{\frac{1}{2\sigma ^2 }\frac{\left( -\gamma \eta \sigma ^2+(\mu -y_0)\right) ^2}{1+\gamma \sigma _{\rho }^2 \sigma ^2}+\frac{1}{2\sigma ^2}\left( \rho \sigma ^2+(\mu -y_0)\right) ^2}}{\sqrt{1+\gamma \sigma _{\rho }^2\sigma ^2}}\right) }{\frac{e^{\frac{1}{2\sigma ^2}\frac{\left( (\rho -\gamma \eta )\sigma ^2+(\mu -y_0)\right) ^2}{1+\gamma \sigma _{\rho }^2 \sigma ^2}}}{\sqrt{1+\gamma \sigma _{\rho }^2\sigma ^2}}\left( \frac{e^{\frac{1}{2\sigma ^2}\frac{\left( (1-\gamma )\eta \sigma ^2+(\mu -y_0)\right) ^2}{1-(1-\gamma )\sigma _{\rho }^2\sigma ^2}+\frac{1}{2\sigma ^2}(\mu -y_0)^2}}{\sqrt{1-(1-\gamma )\sigma _{\rho }^2\sigma ^2}}-\frac{e^{\frac{1}{2\sigma ^2}\frac{\left( \eta \sigma ^2+(\mu -y_0)\right) ^2}{1-\sigma _{\rho }^2\sigma ^2}+\frac{1}{2\sigma ^2}\frac{\left( -\gamma \eta \sigma ^2+(\mu -y_0)\right) ^2}{1+\gamma \sigma _{\rho }^2\sigma ^2}}}{\sqrt{1-\sigma _{\rho }^2\sigma ^2}\sqrt{1+\gamma \sigma _{\rho }^2\sigma ^2}}\right) }. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmiger, S. CAPM-anomalies: quantitative puzzles. Econ Theory 68, 643–667 (2019). https://doi.org/10.1007/s00199-018-1137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00199-018-1137-5

Keywords

JEL Classification

Navigation