Skip to main content
Log in

Bivariate almost stochastic dominance

  • Research Article
  • Published:
Economic Theory Aims and scope Submit manuscript

Abstract

Univariate almost stochastic dominance has been widely studied and applied since its introduction by Leshno and Levy (Manag Sci 48:1074–1085, 2002). This paper extends this construction to the bivariate case by means of suitable two-attribute utility functions. After having confined correlation aversion and correlation loving to some acceptable levels, bivariate almost stochastic dominance rules are introduced for the preferences exhibiting confined correlation aversion and confined correlation loving. The impact of a change in risk in terms of bivariate almost stochastic dominance on optimal saving is analyzed as an application, as well as the effect of envy and altruism on income distributions. Finally, alternative definitions of bivariate almost stochastic dominance are discussed, as well as testing procedures for such dominance rules in financial problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A detailed motivating example follows in Sect. 2.

  2. In other words, \((X_{1},X_{2})\) and \((Z_{1},Z_{2})\) cannot be ordered with respect to \(\preceq _{\text {ca}}\). In such a case, increasing the order of the bivariate stochastic dominance rule may be an option, as discussed in Denuit and Mesfioui (2012).

  3. The terminology survival function refers to survival analysis in biostatistics. Here, we prefer the name excess function since the probabilities of exceeding the levels \(t_{1}\) and \(t_{2}\) are involved.

  4. In the univariate case, it is also necessary to check whether \(X\) dominates \( Y\) in terms of stochastic dominance before examining whether \(Y\) dominates \(X \) in terms of the almost stochastic dominance concept proposed by Lizyayev and Ruszczynski (2012).

  5. For example, please see Post (2003), Kuosmanen (2004) and Lizyayev (2012a).

References

  • Abel, A.: Asset prices under habit formation and catching up with the Joneses. Am. Econ. Rev. 80, 38–42 (1990)

    Google Scholar 

  • Atkinson, A.B.: On the measurement of inequality. J. Econ. Theory 2, 244–263 (1970)

    Article  Google Scholar 

  • Atkinson, A.B., Bourguignon, F.: The comparison of multi-dimensioned distributions of economic status. Rev. Econ. Stud. 49, 183–201 (1982)

    Article  Google Scholar 

  • Bali, T.G., Ozgur Demirtas, K., Levy, H., Wolf, A.: Bonds versus stocks: investors’ age and risk taking. J. Monet. Econ. 56, 817–830 (2009)

    Article  Google Scholar 

  • Bali, T.G., Brown, S.J. Ozgur Demirtas, K.: Investing in Stock Market Anomalies. http://ssrn.com/abstract=1806137 (2011)

  • Bali, T.G., Brown, S.J., Ozgur Demirtas, K.: Do hedge funds outperform stocks and bonds? Manag. Sci. 59, 1887–1903 (2013)

    Article  Google Scholar 

  • Barnett, R.C., Bhattacharya, J., Bunzel, H.: Choosing to keep up with the Joneses and income inequality. Econ. Theory 45, 469–496 (2010)

    Article  Google Scholar 

  • Courbage, C., Rey, B.: Precautionary saving in the presence of other risks. Econ. Theory 32, 417–424 (2007)

    Article  Google Scholar 

  • Denuit, M., Mesfioui, M.: A sufficient condition of crossing-type for the bivariate orthant convex order. Stat. Probab. Lett. 83, 157–162 (2012)

    Article  Google Scholar 

  • Denuit, M., Lefevre, C.L., Mesfioui, M.: A class of bivariate stochastic orderings with applications in actuarial sciences. Insur. Math. Econ. 24, 31–50 (1999)

    Article  Google Scholar 

  • Denuit, M., Dhaene, J., Goovaerts, M.J., Kaas, R.: Actuarial Theory for Dependent Risks: Measures, Orders and Models. Wiley, New York (2005)

    Book  Google Scholar 

  • Denuit, M., Eeckhoudt, L., Menegatti, M.: Correlated risks, bivariate utility and optimal choices. Econ. Theory 46, 39–54 (2011)

    Article  Google Scholar 

  • Denuit, M., Eeckhoudt, L., Tsetlin, I., Winkler, R.L.: Multivariate concave and convex stochastic dominance. In: Biagini, F., Richter, A., Schlesinger, H. (eds.) Risk Measures and Attitudes, pp. 11–32. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  • Dupor, B., Liu, W.-F.: Jealousy and equilibrium overconsumption. Am. Econ. Rev. 93, 423–428 (2003)

    Article  Google Scholar 

  • Eeckhoudt, L., Schlesinger, H.: Changes in risk and the demand for saving. J. Monet. Econ. 55, 1329–1336 (2008)

    Article  Google Scholar 

  • Eeckhoudt, L., Rey, B., Schlesinger, H.: A good sign for multivariate risk taking. Manag. Sci. 53, 117–124 (2007)

    Article  Google Scholar 

  • Epstein, L.G., Tanny, S.M.: Increasing generalized correlation: a definition and some economic consequences. Can. J. Econ. 13, 16–34 (1980)

    Article  Google Scholar 

  • Garcia-Penalosa, C., Turnovsky, S.J.: Growth and income inequality: a canonical model. Econ. Theory 28, 25–49 (2006)

    Article  Google Scholar 

  • Garcia-Penalosa, C., Turnovsky, S.J.: Consumption externalities: a representative consumer model when agents are heterogeneous. Econ. Theory 37, 439–467 (2008)

    Article  Google Scholar 

  • Kaplanski, G., Levy, H.: Investment Choices with Envy and Altruism. http://ssrn.com/abstract=2148874 (2013)

  • Kimball, M.S.: Precautionary saving in the small and in the large. Econometrica 58, 53–73 (1990)

    Article  Google Scholar 

  • Kuosmanen, T.: Efficient diversification according to stochastic dominance criteria. Manag. Sci. 50, 1390–1406 (2004)

    Article  Google Scholar 

  • Leshno, M., Levy, H.: Preferred by all and preferred by most decision makers: almost stochastic dominance. Manag. Sci. 48, 1074–1085 (2002)

    Article  Google Scholar 

  • Levy, M.: Almost stochastic dominance and stocks for the long run. Eur. J. Oper. Res. 194, 250–257 (2009)

    Article  Google Scholar 

  • Levy, H., Parouch, J.: Toward multivariate efficient criteria. J. Econ. Theory 7, 129–142 (1974)

    Article  Google Scholar 

  • Levy, H., Wiener, Z.: Stochastic dominance and prospect dominance with subjective weighting functions. J. Risk Uncertain. 16, 147–163 (1998)

    Article  Google Scholar 

  • Lizyayev, A.: Stochastic dominance efficiency analysis of diversified portfolios: classification, comparison and refinements. Ann. Oper. Res. 196, 391–410 (2012a)

    Article  Google Scholar 

  • Lizyayev, A.: Stochastic dominance: convexity and some efficiency tests. Int. J. Theor. Appl. Financ. 15, 1–19 (2012b)

    Article  Google Scholar 

  • Lizyayev, A., Ruszczynski, A.: Tractable almost stochastic dominance. Eur. J. Oper. Res. 218, 448–455 (2012)

    Article  Google Scholar 

  • Menegatti, M.: Precautionary saving in the presence of other risks: a comment. Econ. Theory 39, 473–476 (2009)

    Article  Google Scholar 

  • Post, T.: Empirical tests for stochastic dominance efficiency. J. Financ. 58, 1905–1931 (2003)

    Article  Google Scholar 

  • Post, T., Kopa, M.: General linear formulations of stochastic dominance criteria. Eur. J. Oper. Res. 230, 321–332 (2013)

    Article  Google Scholar 

  • Richard, S.F.: Multivariate risk aversion, utility independence and separable utility functions. Manag. Sci. 22, 12–21 (1975)

    Article  Google Scholar 

  • Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007)

    Book  Google Scholar 

  • Tsetlin, I., Winkler, R.L.: Multiattribute utility satisfying a preference for combining good with bad. Manag. Sci. 55, 1942–1952 (2009)

    Article  Google Scholar 

  • Tzeng, L.Y., Huang, R.J., Shih, P.T.: Revisiting almost second-degree stochastic dominance. Manag. Sci. 59, 1250–1254 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel M. Denuit.

Additional information

The authors would like to express their gratitude to an anonymous referee whose suggestions have been extremely helpful to revise previous versions of the present work. Michel Denuit acknowledges the financial support from the contract “Projet d’Actions de Recherche Concertées” No 12/17-045 of the “Communauté française de Belgique,” granted by the “Académie universitaire Louvain”.

Appendix: Proofs of the main results

Appendix: Proofs of the main results

1.1 A Proof of Theorem 1

Let us start with the “\(\Rightarrow \)” part. Integration by parts shows that

$$\begin{aligned} E[u(X_{1},X_{2})]&= u(b_{1},b_{2})-\int \limits _{a_{1}}^{b_{1}}u^{(1,0)}(x_{1},b_{2})\Pr [X_{1}\le x_{1}]\mathrm{d}x_{1} \nonumber \\&\quad -\int \limits _{a_{2}}^{b_{2}}u^{(0,1)}(b_{1},x_{2})\Pr [X_{2}\le x_{2}]\mathrm{d}x_{2} \nonumber \\&\quad +\int \limits _{a_{1}}^{b_{1}}\int \limits _{a_{2}}^{b_{2}}u^{(1,1)}(x_{1},x_{2})\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]\mathrm{d}x_{1}\mathrm{d}x_{2}. \end{aligned}$$
(24)

Hence, the gain or loss in expected utility when switching from \( (Y_{1},Y_{2})\) to \((X_{1},X_{2})\) can be written as

$$\begin{aligned}&E[u(X_{1},X_{2})]-E[u(Y_{1},Y_{2})] \\&\quad =\int \limits _{a_{1}}^{b_{1}}u^{(1,0)}(x_{1},b_{2})\Big (\Pr [Y_{1}\le x_{1}]-\Pr [X_{1}\le x_{1}]\Big )\mathrm{d}x_{1} \\&\qquad +\int \limits _{a_{2}}^{b_{2}}u^{(0,1)}(b_{1},x_{2})\Big (\Pr [Y_{2}\le x_{2}]-\Pr [X_{2}\le x_{2}]\Big )\mathrm{d}x_{2} \\&\qquad +\int \limits _{a_{1}}^{b_{1}}\int \limits _{a_{2}}^{b_{2}}\Big (\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]-\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]\Big ) u^{(1,1)}(x_{1},x_{2})\mathrm{d}x_{1}\mathrm{d}x_{2}. \end{aligned}$$

This expression can be traced back to Corollary 4 in Levy and Parouch (1974). The first two terms appearing in the expansion of \( E[u(X_{1},X_{2})]-E[u(Y_{1},Y_{2})]\) are clearly negative as \(u\) is non-decreasing and \(X_{i}\preceq _{\text {fsd}}Y_{i}\) holds for \(i=1,2\). Let us now show that the last one is also negative. To this end, consider \(u\) in \(\mathcal {U}_{\text {ca}}^{\varepsilon }\) such that \(u^{(1,1)}\ne 0\) and denote

$$\begin{aligned} \gamma&= \inf \{-u^{(1,1)}\}>0 \\ \delta&= \sup \{-u^{(1,1)}\}>0. \end{aligned}$$

Note that (4) ensures that

$$\begin{aligned} \delta \le \gamma \left( \frac{1}{\varepsilon }-1\right) \Leftrightarrow \frac{\gamma }{\gamma +\delta }\ge \varepsilon . \end{aligned}$$
(25)

Let \(S^{c}\) denote the complement of \(S\) in \([a_{1},b_{1}]\times [a_{2},b_{2}]\). Then,

$$\begin{aligned}&\int \limits _{a_{1}}^{b_{1}}\int \limits _{a_{2}}^{b_{2}}\Big (\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]-\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]\Big ) u^{(1,1)}(x_{1},x_{2})\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad =\int \int \limits _{S}\Big (\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]-\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]\Big )\big (-u^{(1,1)}(x_{1},x_{2})\big )\mathrm{d}x_{1}\mathrm{d}_{2} \\&\qquad +\int \int \limits _{S^{c}}\Big (\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]-\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]\Big )\big (-u^{(1,1)}(x_{1},x_{2})\big ) \mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad \le \delta \int \int \limits _{S}\Big (\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]-\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\qquad +\,\gamma \int \int \limits _{S^{c}}\Big (\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]-\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad =-\gamma \int \limits _{a_{1}}^{b_{1}}\int \limits _{a_{2}}^{b_{2}}\Big |\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]-\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]\Big |\mathrm{d}x_{1}\mathrm{d}x_{2}\\&\qquad +\,(\gamma +\delta )\int \int \limits _{S}\Big (\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]-\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad \le 0\hbox { by (25)}, \end{aligned}$$

which ends the proof of the “\(\Rightarrow \) ” part.

Let us now turn to the “\(\Leftarrow \)” part. We assume that \(E[u(X_{1},X_{2})]\le E[u(Y_{1},Y_{2})]\) holds for all \(u\) in \(\mathcal {U}_{\text {ca}}^{\varepsilon }\) and we have to show that ( 5) holds. Let us proceed by contradiction and assume that

$$\begin{aligned}&\int \int \limits _{S}\Big (\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]-\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2}\nonumber \\&\quad >\varepsilon \int \limits _{a_{1}}^{b_{1}}\int \limits _{a_{2}}^{b_{2}}\Big |\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]-\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]\Big | \mathrm{d}x_{1}\mathrm{d}x_{2}. \end{aligned}$$
(26)

Let us show that we can then construct a utility function \(u\) in \(\mathcal {U} _{\text {ca}}^{\varepsilon }\) such that \(E[u(X_{1},X_{2})]>E[u(Y_{1},Y_{2})]\). Let \(\gamma \) and \(\delta \) be positive real numbers such that \( \varepsilon =\frac{\gamma }{\gamma +\delta }\). Now consider a utility function \(u\) such that \(u^{(1,0)}(x_{1},b_{2})=0,\,u^{(0,1)}(b_{1},x_{2})=0\), \(u^{(1,1)}=-\gamma \) on \(S^{c}\) and \(u^{(1,1)}=-\delta \) on \(S\), that is, a utility \(u\) proportional to \((x_{1}-b_{1})(x_{2}-b_{2})\) up to additive constants. We then see that

$$\begin{aligned}&E[u(X_{1},X_{2})]-E[u(Y_{1},Y_{2})] \\&\quad =\delta \int \int \limits _{S}\Big (\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]-\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\qquad +\gamma \int \int \limits _{S^{c}}\Big (\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]-\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad =-\gamma \int \limits _{a_{1}}^{b_{1}}\int \limits _{a_{2}}^{b_{2}}\Big |\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]-\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]\Big |\mathrm{d}x_{1}\mathrm{d}x_{2}\\&\qquad +(\gamma +\delta )\int \int \limits _{S}\Big (\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]-\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad >0, \end{aligned}$$

which ends the proof.

1.2 B Proof of Theorem 2

Let us start with the “\(\Rightarrow \)” part. By Corollary 1.6.12 in Denuit et al. (2005) applied to \(X_{i}-a_{i}\) and \(Y_{i}-a_{i}\), we have

$$\begin{aligned}&E[u(X_{1},X_{2})]-E[u(Y_{1},Y_{2})] \nonumber \\&\quad =\int \limits _{a_{1}}^{b_{1}}u^{(1,0)}(x_{1},a_{2})\Big (\Pr [X_{1}>x_{1}]-\Pr [Y_{1}>x_{1}]\Big )\mathrm{d}x_{1} \nonumber \\&\qquad +\int \limits _{a_{2}}^{b_{2}}u^{(0,1)}(a_{1},x_{2})\Big (\Pr [X_{2}>x_{2}]-\Pr [Y_{2}>x_{2}]\Big )\mathrm{d}x_{2} \nonumber \\&\qquad +\int \limits _{a_{1}}^{b_{1}}\int \limits _{a_{2}}^{b_{2}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2} >x_{2}]\Big ) u^{(1,1)}(x_{1},x_{2})\mathrm{d}x_{1}\mathrm{d}x_{2}. \end{aligned}$$
(27)

The first two terms appearing in the expansion of \(E[u(X_{1},X_{2})]-E[u(Y_{1},Y_{2})]\) are negative based on our assumptions that \(X_{i}\preceq _{\text {fsd}}Y_{i}\) holds for \(i=1,2\). Let us now show that the last one is also negative. To this end, consider \(u\) in \(\mathcal {U} _{\text {cl}}^{\phi }\) such that \(u^{(1,1)}\ne 0\) and denote

$$\begin{aligned} \underline{\theta }&= \inf \{u^{(1,1)}\}>0 \\ \bar{\theta }&= \sup \{u^{(1,1)}\}>0. \end{aligned}$$

Note that (4) ensures that

$$\begin{aligned} \bar{\theta }\le \underline{\theta }\left( \frac{1}{\phi }-1\right) \Leftrightarrow \frac{\underline{\theta }}{\bar{\theta }+\underline{\theta }} \ge \phi . \end{aligned}$$
(28)

Let \(\hat{S}^c\) denote the complement of \(\hat{S}\) in \([a_1,b_1]\times [a_2,b_2]\). Then,

$$\begin{aligned}&\int \limits _{a_{1}}^{b_{1}}\int \limits _{a_{2}}^{b_{2}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big ) u^{(1,1)}(x_{1},x_{2})\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad =\int \int \limits _{\hat{S}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big )u^{(1,1)}(x_{1},x_{2})\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\qquad +\int \int \limits _{\hat{S}^{c}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big )u^{(1,1)}(x_{1},x_{2})\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad \le \bar{\theta }\int \int \limits _{\hat{S}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}_{2} \\&\qquad +\,\underline{\theta }\int \int \limits _{\hat{S}^{c}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad =-\underline{\theta }\int \limits _{a_{1}}^{b_{1}}\int \limits _{a_{2}}^{b_{2}}\Big |\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big |\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\qquad +\,(\bar{\theta }+\underline{\theta })\int \int \limits _{\hat{S}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad \le 0\hbox { by (25)}, \end{aligned}$$

which ends the proof of the “\(\Rightarrow \) ” part.

With Eq. (27), the proof for the “\( \Leftarrow \)” part is similar to the one for “\(\Leftarrow \)” part in the proof for Theorem 1. Thus, it is omitted.

1.3 C Proof of Property 1

Let us first consider the implication with \(\preceq _{\text {ca} }^{\varepsilon }\). Under (10) integration by parts gives

$$\begin{aligned}&E[X_{1}X_{2}]-E[Y_{1}Y_{2}]\\&\quad =\int \limits _{a_{1}}^{b_{1}}\int \limits _{a_{2}}^{b_{2}}\Big (\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]-\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]\Big ) \mathrm{d}x_{1}\mathrm{d}x_{2}. \end{aligned}$$

Now,

$$\begin{aligned} 0&\le \int \int \limits _{S}\Big (\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]-\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\le \varepsilon \left( \int \int \limits _{S^{c}}\Big (\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]-\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]\Big ) \mathrm{d}x_{1}\mathrm{d}x_{2}\right. \\&\quad \left. -\int \int \limits _{S}\Big (\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]-\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2}\right) \end{aligned}$$

so that

$$\begin{aligned} 0&\le \int \int \limits _{S^{c}}\Big (\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]-\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad +\frac{1-\varepsilon }{\varepsilon }\int \int \limits _{S}\Big (\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]-\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]\Big ) \mathrm{d}x_{1}\mathrm{d}x_{2}. \end{aligned}$$

As \(\varepsilon <0.5\Rightarrow \frac{1-\varepsilon }{\varepsilon }>1\) and \( \int \int _{S}\Big (\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]-\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2}\le 0\) we have

$$\begin{aligned} 0&\le \int \int \limits _{S^{c}}\Big (\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]-\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad +\int \int \limits _{S}\Big (\Pr [X_{1}\le x_{1},X_{2}\le x_{2}]-\Pr [Y_{1}\le x_{1},Y_{2}\le x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&= E[X_{1}X_{2}]-E[Y_{1}Y_{2}]. \end{aligned}$$

This ends the proof since

$$\begin{aligned} Cov[X_{1},X_{2}]-Cov[Y_{1},Y_{2}]=E[X_{1}X_{2}]-E[Y_{1}Y_{2}] \end{aligned}$$

under (10).

Let us now turn to the implication with \(\preceq _{\text {cl}}^{\phi }\). Under (10), integration by parts gives

$$\begin{aligned}&E[X_{1}X_{2}]-E[Y_{1}Y_{2}]\\&\quad =\int \limits _{a_{1}}^{b_{1}}\int \limits _{a_{2}}^{b_{2}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2}. \end{aligned}$$

Now,

$$\begin{aligned} 0&\le \int \int \limits _{\hat{S}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\le \phi \left( -\int \int \limits _{\hat{S}^{c}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big ) \mathrm{d}x_{1}\mathrm{d}x_{2}\right. \\&\quad \left. +\int \int \limits _{\hat{S}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big ) \mathrm{d}x_{1}\mathrm{d}_{2}\right) \end{aligned}$$

so that

$$\begin{aligned} 0&\ge \int \int \limits _{\hat{S}^{c}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad +\frac{1-\phi }{\phi }\int \int \limits _{\hat{S}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2}. \end{aligned}$$

As \(\phi <0.5\Rightarrow \frac{1-\phi }{\phi }>1\) and \(\int \int _{\hat{S}} \Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big ) \mathrm{d}x_{1}\mathrm{d}x_{2}\ge 0\) we have

$$\begin{aligned} 0&\ge \int \int \limits _{\hat{S}^{c}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&\quad +\int \int \limits _{\hat{S}}\Big (\Pr [X_{1}>x_{1},X_{2}>x_{2}]-\Pr [Y_{1}>x_{1},Y_{2}>x_{2}]\Big )\mathrm{d}x_{1}\mathrm{d}x_{2} \\&= E[X_{1}X_{2}]-E[Y_{1}Y_{2}]. \end{aligned}$$

This ends the proof.

1.4 D Proof of Property 2

Consider \(v\in \mathcal {U}_{\text {ssd}}^{\varepsilon }\). The announced result is valid if we can prove that the bivariate utility function \(u\) defined as

$$\begin{aligned} u(x_{1},x_{2})=v(w_{1}x_{1}+w_{2}x_{2}) \end{aligned}$$

belongs to \(\mathcal {U}_{\text {ca}}^{\varepsilon }\). To this end, notice that

$$\begin{aligned} u^{(1,1)}(x_{1},x_{2})=w_{1}w_{2}v^{(2)}(w_{1}x_{1}+w_{2}x_{2}) \end{aligned}$$

so that

$$\begin{aligned} -u^{(1,1)}(x_{1},x_{2})&= -w_{1}w_{2}v^{(2)}(w_{1}x_{1}+w_{2}x_{2}) \\&\le w_{1}w_{2}\inf \{-v^{(2)}(w_{1}x_{1}+w_{2}x_{2})\}\left( \frac{1}{ \varepsilon }-1\right) \\&= \inf \{-u^{(1,1)}\}\left( \frac{1}{\varepsilon }-1\right) . \end{aligned}$$

This ends the proof.

1.5 E Proof of Theorem 3

Notice that

$$\begin{aligned} \int \limits _{x}^{b}\Pr [X>t]\mathrm{d}t=E[(X-x)_{+}] \end{aligned}$$

where \(\xi _{+}\) denotes the positive part of the real \(\xi \) (equal to 0 if \(\xi \) is negative and to \(\xi \) otherwise). According to Corollary 1.6.10 in Denuit et al. (2005) applied to \(X-a\) and \(Y-a\), we have

$$\begin{aligned}&E[v(X)]-E[v(Y)] \\&\quad = v^{\prime }(a)\big (E[X]-E[Y]\big )+\int \limits _{a}^{b}v^{(2)}(x)\int \limits _{x}^{b}\Big ( \Pr [X>t]-\Pr [Y>t]\Big )\mathrm{d}t\mathrm{d}x. \end{aligned}$$

The first term is negative based on our assumptions. Let us now show that the second term of the above equation is also negative. Consider \(v\) in \( \mathcal {U}_{\text {rl}}^{\phi }\) such that \(v^{(2)}\ne 0\) and denote

$$\begin{aligned} \underline{\lambda }&= \inf \{v^{(2)}\}>0 \\ \bar{\lambda }&= \sup \{v^{(2)}\}>0. \end{aligned}$$

Note that (14) ensures that

$$\begin{aligned} \bar{\lambda }\le \underline{\lambda }\left( \frac{1}{\phi }-1\right) \Leftrightarrow \frac{\underline{\lambda }}{\bar{\lambda }+\underline{\lambda }}\ge \phi . \end{aligned}$$
(29)

Then,

$$\begin{aligned}&\int \limits _{a}^{b}v^{(2)}(x)\int \limits _{x}^{b}\Big (\Pr [X>t]-\Pr [Y>t]\Big )\mathrm{d}t\mathrm{d}x \\&\quad =\int \limits _{\Omega }v^{(2)}(x)\int \limits _{x}^{b}\Big (\Pr [X>t]-\Pr [Y>t]\Big ) \mathrm{d}t\mathrm{d}x\\&\qquad +\int \limits _{\Omega ^{c}}v^{(2)}(x)\int \limits _{x}^{b}\Big (\Pr [X>t]-\Pr [Y>t]\Big ) \mathrm{d}t\mathrm{d}x \\&\quad \le \bar{\lambda }\int \limits _{\Omega }\int \limits _{x}^{b}\Big (\Pr [X>t]-\Pr [Y>t]\Big ) \mathrm{d}t\mathrm{d}x+\underline{\lambda }\int \limits _{\Omega ^{c}}\int \limits _{x}^{b}\Big (\Pr [X>t] -\Pr [Y>t]\Big )\mathrm{d}t\mathrm{d}x \\&\quad =\left( \underline{\lambda }+\bar{\lambda }\right) \int \limits _{\Omega }\int \limits _{x}^{b}\Big (\Pr [X>t]-\Pr [Y>t]\Big )\mathrm{d}t\mathrm{d}x \\&\qquad -\bar{\lambda }\int \limits _{a}^{b}\Big |\int \limits _{x}^{b}\Big (\Pr [X>t]-\Pr [Y>t]\Big )\mathrm{d}t \Big |\mathrm{d}x \\&\quad \le 0\hbox { by (14)}, \end{aligned}$$

where \(\Omega ^{c}\) denotes the complement of \(\Omega \) in \([a,b]\). It ends the proof of the “\(\Rightarrow \)” part.

With Eq. (27), the “\(\Leftarrow \) ” part is similar to the “\(\Leftarrow \) ” part in the proof for Theorem 1. Thus, it is omitted.

1.6 F Proof of Property 3

Consider \(v\in \mathcal {U}_{\text {cl}}^{\phi }\). The announced result is valid if we can prove that the bivariate utility function \(u\) defined as

$$\begin{aligned} u(x_{1},x_{2})=v(w_{1}x_{1}+w_{2}x_{2}) \end{aligned}$$

belongs to \(\mathcal {U}_{\text {cl}}^{\phi }\). To this end, notice that

$$\begin{aligned} u^{(1,1)}(x_{1},x_{2})=w_{1}w_{2}v^{(2)}(w_{1}x_{1}+w_{2}x_{2}) \end{aligned}$$

so that

$$\begin{aligned} u^{(1,1)}(x_{1},x_{2})&= w_{1}w_{2}v^{(2)}(w_{1}x_{1}+w_{2}x_{2}) \\&\le w_{1}w_{2}\inf \{v^{(2)}(w_{1}x_{1}+w_{2}x_{2})\}\left( \frac{1}{\phi }-1\right) \\&= \inf \{u^{(1,1)}\}\left( \frac{1}{\phi }-1\right) . \end{aligned}$$

This ends the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denuit, M.M., Huang, R.J. & Tzeng, L.Y. Bivariate almost stochastic dominance. Econ Theory 57, 377–405 (2014). https://doi.org/10.1007/s00199-014-0826-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00199-014-0826-y

Keywords

JEL Classification

Navigation