Skip to main content

Advertisement

Log in

Bone, cognitive, and anthropometric profiles and their relation to fracture sites in fallers: a cross-sectional study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Risk factors involved in the different osteoporotic fracture locations are not well-known. The results of this study suggest that there is not one typical profile characterising a particular fracture site but that the occurrence of a fracture may result from the combination of different bone, cognitive, and anthropometrics characteristics.

Purpose

Risk factors involved in the different osteoporotic fracture locations are not well-known. The aim of this study was to identify the differences in bone, cognitive, and anthropometric characteristics between different fracture sites, and to determine whether the site of a fall-related fracture is related to a specific profile.

Methods

One hundred six women aged 55 years and older with a recent fall-related fracture of the hip (n = 30), humerus (n = 28), wrist (n = 32), or ankle (n = 16) were included. Bone, cognitive, and anthropometric characteristics were first compared among the four fracture site groups. Then, a principal component analysis (PCA) was performed and a comparison was made between the four profiles identified by the first two PCA components.

Results

The four fracture site groups differed significantly in their education level, bone mineral density (BMD), body mass index (BMI), fear of falling, and number of errors in the Trail Making Test B, an executive function test. Each of the four fracture sites was found in each four PCA profiles, albeit with a different distribution. The profiles differed mainly by bone, cognitive, and anthropometric characteristics, but also by fear of falling.

Conclusions

The fall-related fracture sites differ significantly in anthropometric and bone parameters, in fear of falling and in cognitive abilities. There is not one typical bone, cognitive, and anthropometric profile characterising a particular fall-related site, but rather several possible profiles for a given site. This suggests that the fracture site depends on a combination of several characteristics of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hernlund E, Svedbom A, Ivergård M, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136. https://doi.org/10.1007/s11657-013-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM, Cooper C (2020) The epidemiology of osteoporosis. Br Med Bull 133(1):105–117. https://doi.org/10.1093/bmb/ldaa005

    Article  PubMed  Google Scholar 

  3. Blain H, Masud T, Dargent-Molina P, Martin FC, Rosendahl E, van der Velde N, Bousquet J, Benetos A, Cooper C, Kanis JA, Reginster JY et al (2016) A comprehensive fracture prevention strategy in older adults: the European Union Geriatric Medicine Society (EUGMS) statement. J Nutr Health Aging 20:647–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dargent-Molina P, Favier F, Grandjean H, Baudoin C, Schott A, Hausherr E et al (1996) Fall-related factors and risk of hip fracture: the EPIDOS prospective study. Lancet 348(9021):145–149

    Article  CAS  PubMed  Google Scholar 

  5. Lee SH, Dargent-Molina P, Bréart G (2002) Risk factors for fractures of the proximal humerus: results from the EPIDOS prospective study. J Bone Miner Res 17(5):817–825

    Article  PubMed  Google Scholar 

  6. Lacombe J, Cairns BJ, Green J, Reeves GK, Beral V, Armstrong ME (2016) The effects of age, adiposity, and physical activity on the risk of seven site-specific fractures in postmenopausal women. J Bone Miner Res 31(8):1559–1568

    Article  PubMed  Google Scholar 

  7. So E, Rushing CJ, Simon JE, Goss DA, Prissel MA, Berlet GC (2020) Association between bone mineral density and elderly ankle fractures: a systematic review and meta-analysis. J Foot Ankle Surg 59(5):1049–1057

    Article  PubMed  Google Scholar 

  8. Zhou J, Liu B, Qin MZ, Liu JP (2021) A prospective cohort study of the risk factors for new falls and fragility fractures in self-caring elderly patients aged 80 years and over. BMC Geriatr 21:116–124. https://doi.org/10.1186/s12877-021-02043-x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cummings SR, Nevitt MC (1989) A HYPOTHESIS: The Causes of Hip Fractures. J Gerontol 44(4):M107–M111

    Article  CAS  PubMed  Google Scholar 

  10. Smeesters C, Hayes WC, McMahon TA (2001) Disturbance type and gait speed affect fall direction and impact location. J Biomech 34(3):309–317

    Article  CAS  PubMed  Google Scholar 

  11. Nevitt MC, Cummings SR, Study of Osteoporotic Fractures Research Group (1993) Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. J Am Geriatr Soc 41(11):1226–1234

    Article  CAS  PubMed  Google Scholar 

  12. Palvanen M, Kannus P, Parkkari J, Pitkäjärvi T, Pasanen M, Vuori I et al (2000) The injury mechanisms of osteoporotic upper extremity fractures among older adults: a controlled study of 287 consecutive patients and their 108 controls. Osteoporos Int 11(10):822–831

    Article  CAS  PubMed  Google Scholar 

  13. Beauchet O, Blumen HM, Callisaya ML, De Cock A-M, Kressig RW, Srikanth V et al (2018) Spatiotemporal gait characteristics associated with cognitive impairment: a multicenter cross-sectional study, the intercontinental « Gait, Cognition & Decline » initiative. Curr Alzheimer Res 15(3):273–282

    Article  CAS  PubMed  Google Scholar 

  14. Martin KL, Blizzard L, Wood AG, Srikanth V, Thomson R, Sanders LM et al (2013) Cognitive function, gait, and gait variability in older people: a population-based study. J Gerontol A Biol Sci Med Sci 68(6):726–732

    Article  PubMed  Google Scholar 

  15. Makino K, Makizako H, Doi T, Tsutsumimoto K, Hotta R, Nakakubo S et al (2017) Fear of falling and gait parameters in older adults with and without fall history. Geriatr Gerontol Int 17(12):2455–2459

    Article  PubMed  Google Scholar 

  16. Alley DE, Shardell MD, Peters KW, McLean RR, Dam T-TL, Kenny AM et al (2014) Grip strength cutpoints for the identification of clinically relevant weakness. J Gerontol A Biol Sci Med Sci 69(5):559–566

    Article  PubMed  PubMed Central  Google Scholar 

  17. Langeard A, Pothier K, Morello R, Lelong-Boulouard V, Lescure P, Bocca M-L et al (2016) Polypharmacy cut-off for gait and cognitive impairments. Front Pharmacol 7:296

    Article  PubMed  PubMed Central  Google Scholar 

  18. Loggia G, Attoh-Mensah E, Pothier K, Morello R, Lescure P, Bocca M-L et al (2019) Psychotropic polypharmacy in adults 55 years or older: a risk for impaired global cognition, executive function, and mobility. Front Pharmacol 10:1659. https://doi.org/10.3389/fphar.2019.01659

    Article  PubMed  Google Scholar 

  19. Strauss E, Sherman EMS, Spreen O (2006) A compendium of neuropsychological tests: administration, norms, and commentary. Oxford University Press, New-York, USA

    Google Scholar 

  20. Talevski J, Sanders KM, Busija L, Beauchamp A, Duque G, Borgstrom F, Kanis JA, Svedbom A, Stuart AL, Brennan-Olsen S (2021) Health service use pathways associated with recovery of quality of life at 12-months for individual fracture sites: analyses of the International Costs and Utilities Related to Osteoporotic fractures Study (ICUROS). Bone 144:115805. https://doi.org/10.1016/j.bone.2020.115805

    Article  PubMed  Google Scholar 

  21. Talevski J, Sanders KM, Vogrin S, Duque G, Beauchamp A, Seeman E, Luliano S, Svedbom A, Borgstrom F, Kanis JA, Stuart AL, Brennan-Olsen S (2021) Recovery of quality of life is associated with lower mortality 5-year post-fracture: the Australian arm of the International Costs and Utilities Related to Osteoporotic Fractures Study (AusICUROS). Arch Osteoporos 16:112. https://doi.org/10.1007/s11657-021-00981-y

    Article  PubMed  Google Scholar 

  22. Montgomery SA, Åsberg M (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry 134(4):382–389

    Article  CAS  PubMed  Google Scholar 

  23. Kaplan MH, Feinstein AR (1974) The importance of classifying initial co-morbidity in evaluating the outcome of diabetes mellitus. J Chronic Dis 27(7–8):387–404

    Article  CAS  PubMed  Google Scholar 

  24. Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE (2017) What is polypharmacy? A systematic review of definitions. BMC Geriatr 17(1):230

    Article  PubMed  PubMed Central  Google Scholar 

  25. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. J Psychiatr Res 12(3):189–198

    Article  CAS  PubMed  Google Scholar 

  26. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I et al (2005) The Montreal Cognitive Assessment, Moca: a brief screening tool for mild cognitive impairment: Moca: A Brief Screening Tool for Mci. J Am Geriatr Soc 53(4):695–699

    Article  PubMed  Google Scholar 

  27. Kalafat M, Hugonot-Diener L, Poitrenaud J (2003) Standardisation Et Etalonnage Français Du « Mini Mental State» (MMS), Version Greco. Rev de Neuropsychol 13(2):209–236

    Google Scholar 

  28. Zazzo R (1974) Test des deux barrages. Actualités pédagogiques et psychologiques. Delachaux et Niestlé. vol 7. Neuchatel

  29. Reitan RM (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8(3):271–276

    Article  Google Scholar 

  30. Rey A (1941) L’examen psychologique dans les cas d’encéphalopathie traumatique. Archives de Psychologie 28:286–340

    Google Scholar 

  31. Wechsler D (1997) Wechsler adult intelligence scale-third edition. The Psychological Corporation Limited, London

    Google Scholar 

  32. Sánchez-Cubillo I, Periáñez JA, Adrover-Roig D, Rodríguez-Sánchez JM, Ríos-Lago M, Tirapu J et al (2009) Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J Int Neuropsychol Soc 15(3):438–450

    Article  PubMed  Google Scholar 

  33. Senior G, Piovesana A, Beaumont P (2018) Discrepancy analysis and Australian norms for the Trail Making Test. Clin Neuropsychol 32(3):510–523

    Article  PubMed  Google Scholar 

  34. Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9(3):179–186

    Article  CAS  PubMed  Google Scholar 

  35. Powell LE, Myers AM (1995) The Activities-specific Balance Confidence (ABC) scale. J Gerontol A Biol Sci Med Sci 50A(1):M28-34

    Article  CAS  PubMed  Google Scholar 

  36. Borgen TT, Bjørnerem A, Solberg LB, Andreasen C, Brunborg C, Stenbro M et al (2019) Post-fracture risk assessment: target the centrally sited fractures first! A substudy of NoFRACT. J Bone Miner Res 34(11):2036–2044

    Article  CAS  PubMed  Google Scholar 

  37. Qiao D, Li Y, Liu X, Zhang X, Qian X, Zhang H et al (2020) Association of obesity with bone mineral density and osteoporosis in adults: a systematic review and meta-analysis. Public Health 180:22–28

    Article  CAS  PubMed  Google Scholar 

  38. Lipnicki DM, Makkar SR, Crawford JD, Thalamuthu A, Kochan NA, Lima-Costa MF et al (2019) Determinants of cognitive performance and decline in 20 diverse ethno-regional groups: a COSMIC collaboration cohort study. PLoS Med 16(7):e1002853

    Article  PubMed  PubMed Central  Google Scholar 

  39. Manly JJ, Smith C, Crystal HA, Richardson J, Golub ET, Greenblatt R et al (2011) Relationship of ethnicity, age, education, and reading level to speed and executive function among HIV+ and HIV– women: the Women’s Interagency HIV Study (WIHS) Neurocognitive Substudy. J Clin Exp Neuropsychol 33(8):853–863

    Article  PubMed  PubMed Central  Google Scholar 

  40. Curcio C-L, Wu YY, Vafaei A, de Barbosa JFS, Guerra R, Guralnik J et al (2020) A regression tree for identifying risk factors for fear of falling: the International Mobility in Aging Study (IMIAS). J Gerontol A Biol Sci Med Sci 75(1):181–188

    Article  PubMed  Google Scholar 

  41. Park J-I, Yang J-C, Chung S (2017) Risk factors associated with the fear of falling in community-living elderly people in Korea: role of psychological factors. Psychiatry Investig 14(6):894

    Article  PubMed  PubMed Central  Google Scholar 

  42. Peeters G, Leahy S, Kennelly S, Kenny RA (2018) Is fear of falling associated with decline in global cognitive functioning in older adults: findings from the Irish longitudinal study on Ageing. J Am Med Dir Assoc 19(3):248-254.e3

    Article  PubMed  Google Scholar 

  43. Peeters G, Feeney J, Carey D, Kennelly S, Kenny RA (2019) Fear of falling: a manifestation of executive dysfunction? Int J GeriatrPsychiatry 34(8):1275–1282

    Google Scholar 

  44. Uemura K, Shimada H, Makizako H, Doi T, Tsutsumimoto K, Lee S et al (2015) Effects of mild cognitive impairment on the development of fear of falling in older adults: a prospective cohort study. J Am Med Dir Assoc 16(12):1104.e9-1104.e13

    Article  PubMed  Google Scholar 

  45. Lockhart TE, Frames CW, Soangra R, Lieberman A (2019) Effects of obesity and fall risk on gait and posture of community-dwelling older adults. Int J Progn Health Manag 10(1):019

    PubMed  PubMed Central  Google Scholar 

  46. Dutil M, Handrigan GA, Corbeil P, Cantin V, Simoneau M, Teasdale N et al (2013) The impact of obesity on balance control in community-dwelling older women. Age 35(3):883–890

    Article  PubMed  Google Scholar 

  47. Dufour AB, Roberts B, Broe KE, Kiel DP, Bouxsein ML, Hannan MT (2012) The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham Study. Osteoporos Int 23(2):513–520

    Article  CAS  PubMed  Google Scholar 

  48. Rouzi AA, Ardawi M-SM, Qari MH, Bahksh TM, Raddadi RM, Ali AY et al (2015) Risk factors for falls in a longitudinal cohort study of Saudi postmenopausal women: the Center of Excellence for Osteoporosis Research Study. Menopause 22(9):1012–1020

    Article  PubMed  Google Scholar 

  49. Anstey KJ, Von Sanden C, Luszcz MA (2006) An 8-year prospective study of the relationship between cognitive performance and falling in very old adults: cognition and cognitive decline predict falling. J Am Geriatr Soc 54(8):1169–1176

    Article  PubMed  Google Scholar 

  50. Deandrea S, Lucenteforte E, Bravi F, Foschi R, La Vecchia C, Negri E (2010) Risk factors for falls in community-dwelling older people: a systematic review and meta-analysis. Epidemiol 21(5):658–668

    Article  Google Scholar 

  51. Garson DG (2008) Factor analysis: Statnotes. Retrieved March 22, 2008, from North Carolina State University Public Administration Program. http://www2.chass.ncsu.edu/garson/pa765/factor.htm. Accessed 2 Dec 2022

  52. Bryant FB, Yarnold PR (1995) Principal components analysis and exploratory and confirmatory factor analysis. In: Grimm LG, Yarnold PR (eds) Reading and understanding multivariate statistics. American Psychological Association, Washington DC, pp 99–136

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Kristell Pothier for her significant contribution to the experimental part, Anita Jamet for her contribution to the recruitment of the participants, and Valérie Constans for English proofreading.

Funding

This work was supported by the French Ministry of Health (PHRC Programme Hospitalier de Recherche Clinique 2011 no. 2011-A00534-37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Marcelli.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baillet, M., Morello, R., Vittecoq, O. et al. Bone, cognitive, and anthropometric profiles and their relation to fracture sites in fallers: a cross-sectional study. Osteoporos Int 34, 901–913 (2023). https://doi.org/10.1007/s00198-023-06701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-023-06701-1

Keywords

Navigation