Skip to main content

Advertisement

Log in

Bone mineral density and lipid profiles in older adults: a nationwide cross-sectional study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

It has been hypothesized that lipid profiles are associated with bone mineral density (BMD), but previous results have been controversial. In this study, serum triglycerides showed a significant inverse association with BMD, and the relationship is thought to correlate with vitamin D status among older adults.

Introduction

The purpose of this study was to investigate the relationship between lipid profiles and bone mineral density (BMD) in older adults using data from the Korean National Health and Nutrition Examination Survey (KNHANES).

Methods

We enrolled men older than 50 years and postmenopausal women who participated in the KNHANES 2008–2011. Subjects with liver cirrhosis, thyroid disease, or renal dysfunction and those receiving treatment for hyperlipidemia or osteoporosis were excluded.

Results

A total of 4323 subjects (2286 men and 2037 women) was analyzed. The prevalence of osteoporosis was 8.7% in men older than 50 years and 38.4% in postmenopausal women. Osteopenia and osteoporosis groups were generally older and tended to have a lower body mass index compared to the normal group (p for trend < 0.001). The correlation between each lipid profile and BMD was analyzed in the linear model adjusted for age and body mass index. Total cholesterol and high-density lipoprotein cholesterol showed a negative correlation with BMD in the total population, but there was no significant correlation when analyzed separately for men and women. Triglycerides had a negative association with whole-body BMD in both men and women (p < 0.05). The adjusted odds ratio of logarithmic triglyceride level for osteoporosis was 2.50 (95% confidence interval 1.13–5.51) in women older than 65 years.

Conclusion

Serum triglycerides showed a significant inverse association with BMD, and the relationship is thought to correlate with vitamin D status among older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grundy SM (1998) Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome. Am J Cardiol 81:18B-25B. https://doi.org/10.1016/s0002-9149(98)00033-2

    Article  CAS  Google Scholar 

  2. Ye C, Xu M, Wang S, Jiang S, Chen X, Zhou X, He R (2016) Decreased bone mineral density is an independent predictor for the development of atherosclerosis: a systematic review and meta-analysis. PLoS ONE 11:e0154740. https://doi.org/10.1371/journal.pone.0154740

    Article  CAS  Google Scholar 

  3. Raisi-Estabragh Z, Biasiolli L, Cooper J et al (2021) Poor bone quality is associated with greater arterial stiffness: insights from the UK Biobank. J Bone Miner Res 36:90–99. https://doi.org/10.1002/jbmr.4164

    Article  Google Scholar 

  4. Mandal CC (2015) High Cholesterol deteriorates bone health: new insights into molecular mechanisms. Front Endocrinol (Lausanne) 6:165. https://doi.org/10.3389/fendo.2015.00165

    Article  Google Scholar 

  5. Parhami F, Tintut Y, Beamer WG, Gharavi N, Goodman W, Demer LL (2001) Atherogenic high-fat diet reduces bone mineralization in mice. J Bone Miner Res 16:182–188. https://doi.org/10.1359/jbmr.2001.16.1.182

    Article  CAS  Google Scholar 

  6. An T, Hao J, Sun S, Li R, Yang M, Cheng G, Zou M (2017) Efficacy of statins for osteoporosis: a systematic review and meta-analysis. Osteoporos Int 28:47–57. https://doi.org/10.1007/s00198-016-3844-8

    Article  CAS  Google Scholar 

  7. Makovey J, Chen JS, Hayward C, Williams FM, Sambrook PN (2009) Association between serum cholesterol and bone mineral density. Bone 44:208–213. https://doi.org/10.1016/j.bone.2008.09.020

    Article  CAS  Google Scholar 

  8. Cui LH, Shin MH, Chung EK, Lee YH, Kweon SS, Park KS, Choi JS (2005) Association between bone mineral densities and serum lipid profiles of pre- and post-menopausal rural women in South Korea. Osteoporos Int 16:1975–1981. https://doi.org/10.1007/s00198-005-1977-2

    Article  CAS  Google Scholar 

  9. Li S, Guo H, Liu Y, Wu F, Zhang H, Zhang Z, Xie Z, Sheng Z, Liao E (2015) Relationships of serum lipid profiles and bone mineral density in postmenopausal Chinese women. Clin Endocrinol (Oxf) 82:53–58. https://doi.org/10.1111/cen.12616

    Article  CAS  Google Scholar 

  10. Tang Y, Wang S, Yi Q, Xia Y, Geng B (2021) High-density lipoprotein cholesterol is negatively correlated with bone mineral density and has potential predictive value for bone loss. Lipids Health Dis 20:75. https://doi.org/10.1186/s12944-021-01497-7

    Article  CAS  Google Scholar 

  11. Solomon DH, Avorn J, Canning CF, Wang PS (2005) Lipid levels and bone mineral density. Am J Med 118:1414. https://doi.org/10.1016/j.amjmed.2005.07.031

    Article  Google Scholar 

  12. Jeong IK, Cho SW, Kim SW, Choi HJ, Park KS, Kim SY, Lee HK, Cho SH, Oh BH, Shin CS (2010) Lipid profiles and bone mineral density in pre- and postmenopausal women in Korea. Calcif Tissue Int 87:507–512. https://doi.org/10.1007/s00223-010-9427-3

    Article  CAS  Google Scholar 

  13. Cui R, Sun SQ, Zhong N, Xu MX, Cai HD, Zhang G, Qu S, Sheng H (2020) The relationship between atherosclerosis and bone mineral density in patients with type 2 diabetes depends on vascular calcifications and sex. Osteoporos Int 31:1135–1143. https://doi.org/10.1007/s00198-020-05374-4

    Article  CAS  Google Scholar 

  14. Xu X, Zhang M, Fei Z, Sheng H, Qu S, Cui R (2021) Calcification of lower extremity arteries is related to the presence of osteoporosis in postmenopausal women with type 2 diabetes mellitus: a cross-sectional observational study. Osteoporos Int 32:1185–1193. https://doi.org/10.1007/s00198-020-05775-5

    Article  CAS  Google Scholar 

  15. Zhao H, Li Y, Zhang M, Qi L, Tang Y (2021) Blood lipid levels in patients with osteopenia and osteoporosis:a systematic review and meta-analysis. J Bone Miner Metab 39:510–520. https://doi.org/10.1007/s00774-020-01189-9

    Article  CAS  Google Scholar 

  16. Kha HT, Basseri B, Shouhed D, Richardson J, Tetradis S, Hahn TJ, Parhami F (2004) Oxysterols regulate differentiation of mesenchymal stem cells: pro-bone and anti-fat. J Bone Miner Res 19:830–840. https://doi.org/10.1359/jbmr.040115

    Article  CAS  Google Scholar 

  17. Chang PY, Gold EB, Cauley JA, Johnson WO, Karvonen-Gutierrez C, Jackson EA, Ruppert KM, Lee JS (2016) Triglyceride levels and fracture risk in midlife women: study of women’s health across the nation (SWAN). J Clin Endocrinol Metab 101:3297–3305. https://doi.org/10.1210/jc.2016-1366

    Article  Google Scholar 

  18. Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2:35–43. https://doi.org/10.1038/ncprheum0070

    Article  CAS  Google Scholar 

  19. Kim SJ, Yang WG, Cho E, Park EC (2012) Relationship between weight, body mass index and bone mineral density of lumbar spine in women. J Bone Metab 19:95–102. https://doi.org/10.11005/jbm.2012.19.2.95

    Article  Google Scholar 

  20. Nielson CM, Srikanth P, Orwoll ES (2012) Obesity and fracture in men and women: an epidemiologic perspective. J Bone Miner Res 27:1–10. https://doi.org/10.1002/jbmr.1486

    Article  Google Scholar 

  21. Ahn SH, Lee SH, Kim H, Kim BJ, Koh JM (2014) Different relationships between body compositions and bone mineral density according to gender and age in Korean populations (KNHANES 2008–2010). J Clin Endocrinol Metab 99:3811–3820. https://doi.org/10.1210/jc.2014-1564

    Article  CAS  Google Scholar 

  22. Cooper C, Barker DJ (1995) Risk factors for hip fracture. N Engl J Med 332:814–815. https://doi.org/10.1056/nejm199503233321210

    Article  CAS  Google Scholar 

  23. Cypess AM (2022) Reassessing human adipose tissue. N Engl J Med 386:768–779. https://doi.org/10.1056/NEJMra2032804

    Article  CAS  Google Scholar 

  24. Wang MC, Bachrach LK, Van Loan M, Hudes M, Flegal KM, Crawford PB (2005) The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 37:474–481. https://doi.org/10.1016/j.bone.2005.04.038

    Article  CAS  Google Scholar 

  25. Crivelli M, Chain A, da Silva ITF, Waked AM, Bezerra FF (2021) Association of visceral and subcutaneous fat mass with bone density and vertebral fractures in women with severe obesity. J Clin Densitom 24:397–405. https://doi.org/10.1016/j.jocd.2020.10.005

    Article  Google Scholar 

  26. Bland VL, Klimentidis YC, Bea JW, Roe DJ, Funk JL, Going SB (2022) Cross-sectional associations between adipose tissue depots and areal bone mineral density in the UK Biobank imaging study. Osteoporos Int 33:391–402. https://doi.org/10.1007/s00198-021-06140-w

    Article  CAS  Google Scholar 

  27. Kim S, Leng XI, Kritchevsky SB (2017) Body composition and physical function in older adults with various comorbidities. Innov Aging 1:igx008. https://doi.org/10.1093/geroni/igx008

    Article  Google Scholar 

  28. Hsu YH, Venners SA, Terwedow HA et al (2006) Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 83:146–154. https://doi.org/10.1093/ajcn/83.1.146

    Article  CAS  Google Scholar 

  29. Eckel RH (2011) The complex metabolic mechanisms relating obesity to hypertriglyceridemia. Arterioscler Thromb Vasc Biol 31:1946–1948. https://doi.org/10.1161/atvbaha.111.233049

    Article  Google Scholar 

  30. Chi JH, Shin MS, Lee BJ (2019) Identification of hypertriglyceridemia based on bone density, body fat mass, and anthropometry in a Korean population. BMC Cardiovasc Disord 19:66. https://doi.org/10.1186/s12872-019-1050-2

    Article  Google Scholar 

  31. Hussain AA, Hübel C, Hindborg M, Lindkvist E, Kastrup AM, Yilmaz Z, Støving RK, Bulik CM, Sjögren JM (2019) Increased lipid and lipoprotein concentrations in anorexia nervosa: a systematic review and meta-analysis. Int J Eat Disord 52:611–629. https://doi.org/10.1002/eat.23051

    Article  Google Scholar 

  32. Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, Ghomi RH, Rosen CJ, Klibanski A (2009) Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab 94:2129–2136. https://doi.org/10.1210/jc.2008-2532

    Article  CAS  Google Scholar 

  33. Bredella MA, Gill CM, Gerweck AV, Landa MG, Kumar V, Daley SM, Torriani M, Miller KK (2013) Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology 269:534–541. https://doi.org/10.1148/radiology.13130375

    Article  Google Scholar 

  34. Capuani S (2013) Water diffusion in cancellous bone. Microporous Mesoporous Mater 178:34–38. https://doi.org/10.1016/j.micromeso.2013.05.016

    Article  CAS  Google Scholar 

  35. Kuiper JW, van Kuijk C, Grashuis JL, Ederveen AG, Schütte HE (1996) Accuracy and the influence of marrow fat on quantitative CT and dual-energy X-ray absorptiometry measurements of the femoral neck in vitro. Osteoporos Int 6:25–30. https://doi.org/10.1007/bf01626534

    Article  CAS  Google Scholar 

  36. Huang Y, Li X, Wang M, Ning H, A L, Li Y, Sun C, (2013) Lipoprotein lipase links vitamin D, insulin resistance, and type 2 diabetes: a cross-sectional epidemiological study. Cardiovasc Diabetol 12:17. https://doi.org/10.1186/1475-2840-12-17

    Article  CAS  Google Scholar 

  37. Hewison M (2012) An update on vitamin D and human immunity. Clin Endocrinol (Oxf) 76:315–325. https://doi.org/10.1111/j.1365-2265.2011.04261.x

    Article  CAS  Google Scholar 

  38. Sahota O (2000) Osteoporosis and the role of vitamin D and calcium-vitamin D deficiency, vitamin D insufficiency and vitamin D sufficiency. Age Ageing 29:301–304. https://doi.org/10.1093/ageing/29.4.301

    Article  CAS  Google Scholar 

  39. Hajhashemy Z, Shahdadian F, Moslemi E, Mirenayat FS, Saneei P (2021) Serum vitamin D levels in relation to metabolic syndrome: a systematic review and dose-response meta-analysis of epidemiologic studies. Obes Rev 22:e13223. https://doi.org/10.1111/obr.13223

    Article  CAS  Google Scholar 

  40. Wallace HJ, Holmes L, Ennis CN, Cardwell CR, Woodside JV, Young IS, Bell PM, Hunter SJ, McKinley MC (2019) Effect of vitamin D3 supplementation on insulin resistance and β-cell function in prediabetes: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr 110:1138–1147. https://doi.org/10.1093/ajcn/nqz171

    Article  Google Scholar 

  41. Angellotti E, D’Alessio D, Dawson-Hughes B, Chu Y, Nelson J, Hu P, Cohen RM, Pittas AG (2019) Effect of vitamin D supplementation on cardiovascular risk in type 2 diabetes. Clin Nutr 38:2449–2453. https://doi.org/10.1016/j.clnu.2018.10.003

    Article  CAS  Google Scholar 

  42. Choi HS (2013) Vitamin D status in Korea. Endocrinol Metab (Seoul) 28:12–16. https://doi.org/10.3803/EnM.2013.28.1.12

    Article  Google Scholar 

  43. Choi YJ, Shin HB, Park B, Kim DJ, Chung YS (2021) Temporal change in the diagnosis and treatment rates of osteoporosis: results from the Korea National Health and Nutrition Examination Survey. Osteoporos Int 32:1777–1784. https://doi.org/10.1007/s00198-021-05864-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Statistical consultation was supported by the Department of Biostatistics of the Catholic Research Coordinating Center.

Funding

This research was supported by a grant from the Institute of Clinical Medicine Research in Yeouido St. Mary’s Hospital, The Catholic University of Korea.

Author information

Authors and Affiliations

Authors

Contributions

Conception or design: J. K., K. H. B. Acquisition, analysis, or interpretation of data: J. K., J. H., C. J., J. L., Y. L., K. J., M. K. K., H. S. K., K. H. S., K. H. B. Drafting or revising the work: J. K. Final approval of the manuscript: J. K., J. H., C. J., J. L., Y. L., K. J., M. K. K., H. S. K., K. H. S., K. H. B.

Corresponding author

Correspondence to Ki-Hyun Baek.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Ha, J., Jeong, C. et al. Bone mineral density and lipid profiles in older adults: a nationwide cross-sectional study. Osteoporos Int 34, 119–128 (2023). https://doi.org/10.1007/s00198-022-06571-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06571-z

Keywords

Navigation