Skip to main content
Log in

Associations of osteoprotegerin (OPG) TNFRSF11B gene polymorphisms with risk of fractures in older adult populations: meta-analysis of genetic and genome-wide association studies

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The meta-analysis of osteoprotegerin (OPG) (TNFRSF11B) polymorphisms from genetic association studies and genome-wide association studies was performed in order to test the hypothesis of association between OPG polymorphisms and fracture. The findings showed a significant 13% to 37% protective effect of OPG on fractures in postmenopausal women (PSM) (rs2073618), overall, ≥ 60y and Western subjects (rs3134069 and rs3134070).

Purpose

Fractures in older people usually result from compromised bone integrity. The multifactorial aetiology of fractures includes both genetic and environmental factors. Inconsistency of reported associations of osteoprotegerin (OPG) (TNFRSF11B) polymorphisms with fracture in the older adult population warranted a meta-analysis to determine more precise estimates.

Methods

We searched for all available literature on OPG (TNFRSF11B) and fracture. Four polymorphisms were examined, one exonic (rs2073618) and three intronic (rs3134069, rs3134070 and rs3102735). The first two intron polymorphisms were combined (OPGI: osteoprotegerin intron) on account of complete linkage disequilibrium. Risks were estimated with odds ratios (ORs) and 95% confidence intervals (CIs) using the allele-genotype model that included variant (var), wild-type (wt) and heterozygote (het). Multiple comparisons were Bonferroni-corrected. We used meta-regression to examine sources of heterogeneity. Zero heterogeneity (homogeneity: I2 = 0%) and high significance (Pa < 0.00001) were the criteria for strength of evidence. Significant outcomes were subjected to sensitivity analysis and publication bias assessment.

Results

From 13 articles (11 genetic association and two genome-wide), this meta-analysis generated five significant pooled ORs, all indicating reduced risks (ORs 0.44–0.87). Of the five, four highly significant comparisons (Pa ≤ 0.00001–0.002) survived the Bonferroni correction, one in rs2073618 het model of the postmenopausal women (OR 0.87, 95% CI 0.81–0.92, I2 = 0%) and the other three in OPGI wt model of the overall analysis, ≥ 60 y and Western subjects (ORs 0.63–0.71, 95% CI 0.47–0.86, I2 = 97–99%). These findings were consistent, had high significance and high statistical power and were robust and without evidence of publication bias. Four covariates (year of publication, study quality, fracture type/site and sample size) were the sources of heterogeneity in the OPGI overall outcomes (Pa = 0.0001–0.03).

Conclusion

Evidence showed that the OPG (TNFRSF11B) polymorphisms reduced the risk for fracture in older adults, particularly protective among postmenopausal women, ≥ 60 y and Western subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All relevant data are within the paper and its supporting information files.

Abbreviations

A:

Adenine

AES:

Adjusted effect size

BMD:

Bone mineral density

CI:

Confidence interval

C:

Cytosine

d:

Duplicate

GAS:

Genetic association study

G:

Guanine

GWAS:

Genome-wide association study

het :

var + wt (Heterozygous)

HWE:

Hardy-Weinberg equilibrium

I 2 :

Measure of variability

IV:

Inverse variance

L:

Laplace-corrected data

LD:

Linkage disequilibrium

Log:

Logarithm

n:

Number of studies

NOS:

Newcastle-Ottawa Scale

OPG :

osteoprotegerin Gene

OPG:

Osteoprotegerin protein

OPGI:

osteoprotegerin Intron

OR:

Odds ratio

OR^:

Boolean descriptor

P a :

P Value for association

P HET :

P Value for heterogeneity

P HWE :

P Value for HWE

PRS:

Polygenic risk score

PSM:

Postmenopausal

RANK:

Receptor activator of nuclear factor-κB

RANKL:

Ligand of RANK

SD:

Standard deviation

SE:

Standard error

SNP:

Single-nucleotide polymorphism

TNFRSF11B :

Tumour necrosis factor receptor superfamily member 11B

T:

Thymine

var :

Variant

wt :

Wild-type

y:

Year

References

  1. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  2. Jurado S, Nogues X, Agueda L et al (2010) Polymorphisms and haplotypes across the osteoprotegerin gene associated with bone mineral density and osteoporotic fractures. Osteoporos Int 21:287–296

    Article  CAS  Google Scholar 

  3. Simonet WS, Lacey DL, Dunstan CR et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  4. Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9(Suppl 1):S1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Morinaga T, Nakagawa N, Yasuda H, Tsuda E, Higashio K (1998) Cloning and characterization of the gene encoding human osteoprotegerin/osteoclastogenesis-inhibitory factor. Eur J Biochem 254:685–691

    Article  CAS  PubMed  Google Scholar 

  6. Vidal C, Formosa R, Xuereb-Anastasi A (2011) Functional polymorphisms within the TNFRSF11B (osteoprotegerin) gene increase the risk for low bone mineral density. J Mol Endocrinol 47:327–333

    Article  CAS  PubMed  Google Scholar 

  7. Garcia-Unzueta MT, Riancho JA, Zarrabeitia MT, Sanudo C, Berja A, Valero C, Pesquera C, Paule B, Gonzalez-Macias J, Amado JA (2008) Association of the 163A/G and 1181G/C osteoprotegerin polymorphism with bone mineral density. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 40:219–224

  8. Arko B, Prezelj J, Komel R, Kocijancic A, Hudler P, Marc J (2002) Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab 87:4080–4084

    Article  CAS  PubMed  Google Scholar 

  9. Ralston SH (2002) Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab 87:2460–2466

    Article  CAS  PubMed  Google Scholar 

  10. Yamada Y, Ando F, Niino N, Shimokata H (2003) Association of polymorphisms of the osteoprotegerin gene with bone mineral density in Japanese women but not men. Mol Genet Metab 80:344–349

    Article  CAS  PubMed  Google Scholar 

  11. Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, P. T (2011) The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses. Ottawa Hospital Research Institute. http://www.ohri.ca/programs/clical_epidemiology/oxford.asp. Accessed 22 August 2020.

  12. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  13. Nguyen TV, Eisman JA (2012) Genetics and the individualized prediction of fracture. Curr Osteoporos Rep 10:236–244

    Article  PubMed  Google Scholar 

  14. Lewontin RC (1988) On measures of gametic disequilibrium. Genetics 120:849–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nott A, Meislin SH, Moore MJ (2003) A quantitative analysis of intron effects on mammalian gene expression. RNA 9:607–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berthold FH V.M., F. K (2010) How to intelligently make sense of real data in descriptive statistics. Guide to Intelligent Data Analysis. Texts in computer science. Springer Science & Business Media, p315

  17. Higgins J, Thomas J (2021) Imputing standard deviations for changes from baseline. Cochrane Handbook for Systematic Reviews of Interventions. Version 6.2

  18. Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions. Cochrane Book Series. A John Wiley & Sons, Ltd., Publication

  19. Rayner C (2018) P is for polygenic risk scores. Emotional Development, Interventions and Treatment (EDIT) Lab Blog. King's College London, London

  20. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  21. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    CAS  PubMed  Google Scholar 

  22. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  23. Wallace BC, Schmid CH, Lau J, Trikalinos TA (2009) Meta-analyst: software for meta-analysis of binary, continuous and diagnostic data. BMC Med Res Methodol 9:80

    Article  PubMed  PubMed Central  Google Scholar 

  24. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101

    Article  CAS  PubMed  Google Scholar 

  26. Ioannidis JP, Trikalinos TA (2007) The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ 176:1091–1096

    Article  PubMed  PubMed Central  Google Scholar 

  27. Boronova I, Bernasovska J, Macekova S, Petrejcikova E, Tomkova Z, Kloc J, Poracova J, Blascakova MM, Litavcova E (2015) TNFRSF11B gene polymorphisms, bone mineral density, and fractures in Slovak postmenopausal women. J Appl Genet 56:57–63

    Article  CAS  PubMed  Google Scholar 

  28. Cvijetic S, Grazio S, Kosovic P, Uremovic M, Nemcic T, Bobic J (2016) Osteoporosis and polymorphisms of osteoprotegerin gene in postmenopausal women - a pilot study. Reumatologia 54:10–13

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jorgensen HL, Kusk P, Madsen B, Fenger M, Lauritzen JB (2004) Serum osteoprotegerin (OPG) and the A163G polymorphism in the OPG promoter region are related to peripheral measures of bone mass and fracture odds ratios. J Bone Miner Metab 22:132–138

    Article  CAS  PubMed  Google Scholar 

  30. Langdahl BL, Carstens M, Stenkjaer L, Eriksen EF (2002) Polymorphisms in the osteoprotegerin gene are associated with osteoporotic fractures. J Bone Miner Res 17:1245–1255

    Article  CAS  Google Scholar 

  31. Moffett SP, Oakley JI, Cauley JA et al (2008) Osteoprotegerin Lys3Asn polymorphism and the risk of fracture in older women. J Clin Endocrinol Metab 93:2002–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pereira RMR, Figueiredo CP, Cha CC, Caparbo VF, Oliveira RM, Franco AS, Menezes PR, de Castro I, Onuchic LF (2016) Associations between OPG and RANKL polymorphisms, vertebral fractures, and abdominal aortic calcification in community-dwelling older subjects: the Sao Paulo Ageing & Health Study (SPAH). Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 27:3319–3329

    Article  CAS  Google Scholar 

  33. Piedra M, Garcia-Unzueta MT, Berja A, Paule B, Lavin BA, Valero C, Riancho JA, Amado JA (2011) Single nucleotide polymorphisms of the OPG/RANKL system genes in primary hyperparathyroidism and their relationship with bone mineral density. BMC Med Genet 12:168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sheng X, Cai G, Gong X, Yao Z, Zhu Y (2017) Common Variants in OPG Confer Risk to Bone Mineral Density Variation and Osteoporosis Fractures. Sci Rep 7:1739

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu S, Li Z, Zhang J, Rui Y (2019) The genetic association between osteoprotegerin gene polymorphisms and fracture risk in Chinese Han population. J Cell Physiol 234:20603–20607

    Article  CAS  PubMed  Google Scholar 

  36. Bonfa AC, Seguro LP, Caparbo V, Bonfa E, Pereira RM (2015) RANKL and OPG gene polymorphisms: associations with vertebral fractures and bone mineral density in premenopausal systemic lupus erythematosus. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 26:1563–1571

    Article  CAS  Google Scholar 

  37. Krajcovicova V, Omelka R, Durisova J, Martiniakova M, Galbavy D, Bauerova M (2015) The effect of A163G polymorphism in the osteoprotegerin gene on osteoporosis related traits in Slovak postmenopausal women. Anthropol Anz 72:311–319

    Article  PubMed  Google Scholar 

  38. Duncan EL, Danoy P, Kemp JP et al (2011) Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet 7:e1001372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Estrada K, Styrkarsdottir U, Evangelou E et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nielson CM, Liu CT, Smith AV et al (2016) Novel genetic variants associated with increased vertebral volumetric BMD, reduced vertebral fracture risk, and increased expression of SLC1A3 and EPHB2. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 31:2085–2097

    Article  CAS  Google Scholar 

  41. Richards JB, Rivadeneira F, Inouye M et al (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taylor KC, Evans DS, Edwards DRV et al (2016) A genome-wide association study meta-analysis of clinical fracture in 10,012 African American women. Bone reports 5:233–242

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zofkova I, Nemcikova P, Kuklik M (2015) Polymorphisms associated with low bone mass and high risk of atraumatic fracture. Physiol Res 64:621–631

    Article  CAS  PubMed  Google Scholar 

  44. Morris JA, Kemp JP, Youlten SE et al (2019) An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet 51:258–266

    Article  CAS  PubMed  Google Scholar 

  45. Trajanoska K, Morris JA, Oei L et al (2018) Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study. Bmj 362:k3225

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kharazmi M, Michaelsson K, Schilcher J, Eriksson N, Melhus H, Wadelius M, Hallberg P (2019) A Genome-Wide Association Study of Bisphosphonate-Associated Atypical Femoral Fracture. Calcif Tissue Int 105:51–67

    Article  CAS  PubMed  Google Scholar 

  47. Rivadeneira F, Styrkarsdottir U, Estrada K et al (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41:1199–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clark MF, Baudouin SV (2006) A systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med 32:1706–1712

    Article  PubMed  Google Scholar 

  49. International Schizophrenia C, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752

    Article  Google Scholar 

  50. Janssens A (2019) Validity of polygenic risk scores: are we measuring what we think we are? Hum Mol Genet 28:R143–R150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S et al (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358:2355–2365

    Article  CAS  PubMed  Google Scholar 

  52. Hussien YM, Shehata A, Karam RA, Alzahrani SS, Magdy H, El-Shafey AM (2013) Polymorphism in vitamin D receptor and osteoprotegerin genes in Egyptian rheumatoid arthritis patients with and without osteoporosis. Mol Biol Rep 40:3675–3680

    Article  CAS  PubMed  Google Scholar 

  53. You L, Chen L, Pan L, Chen JY (2013) New insights into the gene function of osteoporosis. Front Biosci 18:1088–1097

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceived the topic: NP, PT. Conceived the study design: NP. Data extraction: PT, NP, HJ. Data analysis: PT, NP, HJ. Writing—original draft: PT, NP. Writing—review and editing: PT, NP, HJ, NJ. All authors reviewed the manuscript.

Corresponding author

Correspondence to N. Pabalan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 107 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tharabenjasin, P., Pabalan, N., Jarjanazi, H. et al. Associations of osteoprotegerin (OPG) TNFRSF11B gene polymorphisms with risk of fractures in older adult populations: meta-analysis of genetic and genome-wide association studies. Osteoporos Int 33, 563–575 (2022). https://doi.org/10.1007/s00198-021-06161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-021-06161-5

Keywords

Navigation