Skip to main content

Advertisement

Log in

Normal bone health in young adults with 21-hydroxylase enzyme deficiency undergoing glucocorticoid replacement therapy

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

It is of great importance to investigate any potential detrimental effect on bone health in young adults with 21-hydroxylase enzyme deficiency undergoing glucocorticoid replacement therapy. This study demonstrated normal bone health in well-controlled patients. Additionally, glucocorticoid dose may play an important role in the mineral density of femoral neck region.

Purpose

To compare regional bone mineral densities (BMDs) and bone statuses of young adults with congenital adrenal hyperplasia (CAH) due to 21-hydroxylase enzyme (21OHase) deficiency with a control group. The duration and dose of glucocorticoid therapy and relative skeletal muscle index (an indicator of sarcopenia) were also analyzed as parameters to predict bone health.

Methods

This case–control study included 23 patients (7 male and 16 female) and 20 controls (8 male and 12 female) matched by age range (18 to 31 years). Dual energy X-ray absorptiometry and phalangeal quantitative ultrasound (QUS) were used to estimate BMD and bone status, respectively.

Results

No difference was observed between patients and controls (of both sexes) in absolute values of BMD and Z-scores for the total body, lumbar spine, and femoral neck; or the bone status (estimated by phalangeal QUS). Multiple linear regression analysis demonstrated that relative skeletal muscle index independently correlated with BMD of the entire body (β: 0.67, P = 0.007), the lumbar spine (β: 0.73, P = 0.005), and the femoral neck (β: 0.67, P = 0.007). However, the dose of glucocorticoids (β: − 0.38, P = 0.028) independently correlated with BMD in the femoral neck region alone.

Conclusion

No signs of change in bone health were observed in patients with CAH when compared to the reference group. Additionally, a marker of sarcopenia was demonstrated to have a role in mineral density mechanisms in all analyzed bone sites. Only the femoral neck BMD seemed to be significantly dependent on glucocorticoid dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795. https://doi.org/10.1001/jama.285.6.785

    Article  Google Scholar 

  2. Armas LAG, Recker RR (2012) Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am 41:475–486. https://doi.org/10.1016/j.ecl.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  3. Jain RK, Vokes T (2017) Dual-energy X-ray absorptiometry. J Clin Densitom 20:291–303. https://doi.org/10.1016/j.jocd.2017.06.014

    Article  PubMed  Google Scholar 

  4. Gonnelli S, Cepollaro C (2002) The use of ultrasound in the assessment of bone status. J Endocrinol Invest 25:389–397. https://doi.org/10.1007/BF03344023

    Article  CAS  PubMed  Google Scholar 

  5. Claahsen-van der Grinten HL, Speiser PW, Ahmed SF et al (2021) Congenital adrenal hyperplasia—current insights in pathophysiology, diagnostics and management. Endocr Rev. https://doi.org/10.1210/endrev/bnab016

    Article  PubMed  Google Scholar 

  6. Speiser PW, Arlt W, Auchus RJ et al (2018) Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 103:4043–4088. https://doi.org/10.1210/jc.2018-01865

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bachelot A, Chakhtoura Z, Samara-Boustani D et al (2010) Bone health should be an important concern in the care of patients affected by 21 hydroxylase deficiency. Int J Pediatr Endocrinol 2010. https://doi.org/10.1155/2010/326275

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ünal S, Alikaşifoğlu A, Özön A, et al (2020) Effect of long-term glucocorticoid therapy on bone mineral density of the patients with congenital adrenal hyperplasia. Turk J Pediatr 62:359–366. https://doi.org/10.24953/turkjped.2020.03.002

  9. Delvecchio M, Soldano L, Lonero A et al (2015) Evaluation of impact of steroid replacement treatment on bone health in children with 21-hydroxylase deficiency. Endocrine 48:995–1000. https://doi.org/10.1007/s12020-014-0332-9

    Article  CAS  PubMed  Google Scholar 

  10. Metwalley KA, El-Saied A-RA-H (2014) Bone mineral status in Egyptian children with classic congenital adrenal hyperplasia. A single-center study from Upper Egypt. Indian J Endocrinol Metab 18:700–704. https://doi.org/10.4103/2230-8210.139236

    Article  PubMed  PubMed Central  Google Scholar 

  11. Riehl G, Reisch N, Roehle R et al (2020) Bone mineral density and fractures in congenital adrenal hyperplasia: findings from the dsd-LIFE study. Clin Endocrinol 92:284–294. https://doi.org/10.1111/cen.14149

    Article  CAS  Google Scholar 

  12. Auer MK, Paizoni L, Hofbauer LC et al (2020) Effects of androgen excess and glucocorticoid exposure on bone health in adult patients with 21-hydroxylase deficiency. J Steroid Biochem Mol Biol 204:105734. https://doi.org/10.1016/j.jsbmb.2020.105734

    Article  CAS  PubMed  Google Scholar 

  13. de Araujo M, Sanches MR, Suzuki LA et al (1996) Molecular analysis of CYP21 and C4 genes in Brazilian families with the classical form of steroid 21-hydroxylase deficiency. Braz J Med Biol Res 29:1–13

    Google Scholar 

  14. Lau IF, Soardi FC, Lemos-Marini SH et al (2001) H28+C insertion in the CYP21 gene: a novel frameshift mutation in a Brazilian patient with the classical form of 21-hydroxylase deficiency. J Clin Endocrinol Metab 86:5877–5880. https://doi.org/10.1210/jcem.86.12.8113

    Article  CAS  PubMed  Google Scholar 

  15. Paulino LC, Araujo M, Guerra G et al (1999) Mutation distribution and CYP21/C4 locus variability in Brazilian families with the classical form of the 21-hydroxylase deficiency. Acta Paediatr 88:275–283. https://doi.org/10.1080/08035259950170024

    Article  CAS  PubMed  Google Scholar 

  16. Soardi FC, Barbaro M, Lau IF et al (2008) Inhibition of CYP21A2 enzyme activity caused by novel missense mutations identified in Brazilian and Scandinavian patients. J Clin Endocrinol Metab 93:2416–2420. https://doi.org/10.1210/jc.2007-2594

    Article  CAS  PubMed  Google Scholar 

  17. Liu D, Ahmet A, Ward L et al (2013) A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol 9:30. https://doi.org/10.1186/1710-1492-9-30

    Article  PubMed  PubMed Central  Google Scholar 

  18. Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5:303–311; discussion 312–313

  19. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339. https://doi.org/10.1210/jcem-73-6-1332

    Article  CAS  PubMed  Google Scholar 

  20. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145. https://doi.org/10.1002/jbmr.5650070204

    Article  CAS  PubMed  Google Scholar 

  21. Walsh MC, Hunter GR, Livingstone MB (2006) Sarcopenia in premenopausal and postmenopausal women with osteopenia, osteoporosis and normal bone mineral density. Osteoporos Int 17:61–67. https://doi.org/10.1007/s00198-005-1900-x

    Article  PubMed  Google Scholar 

  22. Gonçalves EM, Sewaybricker LE, Baptista F et al (2014) Performance of phalangeal quantitative ultrasound parameters in the evaluation of reduced bone mineral density assessed by DX in patients with 21 hydroxylase deficiency. Ultrasound Med Biol 40:1414–1419. https://doi.org/10.1016/j.ultrasmedbio.2013.12.027

    Article  PubMed  Google Scholar 

  23. Ainsworth BE, Haskell WL, Herrmann SD et al (2011) 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43:1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12

    Article  PubMed  Google Scholar 

  24. Borges JH, de Oliveira DM, de Lemos-Marini SHV et al (2021) Fat distribution and lipid profile of young adults with congenital adrenal hyperplasia due to 21-hydroxylase enzyme deficiency. Lipids 56:101–110. https://doi.org/10.1002/lipd.12280

    Article  CAS  PubMed  Google Scholar 

  25. Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419. https://doi.org/10.1007/BF00280883

    Article  CAS  PubMed  Google Scholar 

  26. Muthusamy K, Elamin MB, Smushkin G et al (2010) Clinical review: adult height in patients with congenital adrenal hyperplasia: a systematic review and metaanalysis. J Clin Endocrinol Metab 95:4161–4172. https://doi.org/10.1210/jc.2009-2616

    Article  CAS  PubMed  Google Scholar 

  27. Mora S, Saggion F, Russo G et al (1996) Bone density in young patients with congenital adrenal hyperplasia. Bone 18:337–340. https://doi.org/10.1016/8756-3282(96)00003-8

    Article  CAS  PubMed  Google Scholar 

  28. Stikkelbroeck NMML, Oyen WJG, van der Wilt G-J et al (2003) Normal bone mineral density and lean body mass, but increased fat mass, in young adult patients with congenital adrenal hyperplasia. J Clin Endocrinol Metab 88:1036–1042. https://doi.org/10.1210/jc.2002-021074

    Article  CAS  PubMed  Google Scholar 

  29. Girgis R, Winter JS (1997) The effects of glucocorticoid replacement therapy on growth, bone mineral density, and bone turnover markers in children with congenital adrenal hyperplasia. J Clin Endocrinol Metab 82:3926–3929. https://doi.org/10.1210/jcem.82.12.4320

    Article  CAS  PubMed  Google Scholar 

  30. Christiansen P, Mølgaard C, Müller J (2004) Normal bone mineral content in young adults with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm Res 61:133–136. https://doi.org/10.1159/000075588

    Article  CAS  PubMed  Google Scholar 

  31. Wüster C, Albanese C, De Aloysio D et al (2000) Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. The Phalangeal Osteosonogrammetry Study Group. J Bone Miner Res 15:1603–1614. https://doi.org/10.1359/jbmr.2000.15.8.1603

    Article  PubMed  Google Scholar 

  32. Koetz KR, Ventz M, Diederich S, Quinkler M (2012) Bone mineral density is not significantly reduced in adult patients on low-dose glucocorticoid replacement therapy. J Clin Endocrinol Metab 97:85–92. https://doi.org/10.1210/jc.2011-2036

    Article  CAS  PubMed  Google Scholar 

  33. Falhammar H, Filipsson Nyström H, Wedell A et al (2013) Bone mineral density, bone markers, and fractures in adult males with congenital adrenal hyperplasia. Eur J Endocrinol 168:331–341. https://doi.org/10.1530/EJE-12-0865

    Article  CAS  PubMed  Google Scholar 

  34. Schulz J, Frey KR, Cooper MS et al (2016) Reduction in daily hydrocortisone dose improves bone health in primary adrenal insufficiency. Eur J Endocrinol 174:531–538. https://doi.org/10.1530/EJE-15-1096

    Article  CAS  PubMed  Google Scholar 

  35. Rangaswamaiah S, Gangathimmaiah V, Nordenstrom A, Falhammar H (2020) Bone mineral density in adults with congenital adrenal hyperplasia: a systematic review and meta-analysis. Front Endocrinol 11:493. https://doi.org/10.3389/fendo.2020.00493

    Article  Google Scholar 

  36. Kraan GP, Dullaart RP, Pratt JJ et al (1998) The daily cortisol production reinvestigated in healthy men. The serum and urinary cortisol production rates are not significantly different. J Clin Endocrinol Metab 83:1247–1252. https://doi.org/10.1210/jcem.83.4.4694

    Article  CAS  PubMed  Google Scholar 

  37. Iervolino LL, Ferraz-de-Souza B, Martin RM et al (2020) Real-world impact of glucocorticoid replacement therapy on bone mineral density: retrospective experience of a large single-center CAH cohort spanning 24 years. Osteoporos Int 31:905–912. https://doi.org/10.1007/s00198-019-05268-0

    Article  CAS  PubMed  Google Scholar 

  38. Canalis E, Mazziotti G, Giustina A, Bilezikian JP (2007) Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 18:1319–1328. https://doi.org/10.1007/s00198-007-0394-0

    Article  CAS  PubMed  Google Scholar 

  39. Whittier X, Saag KG (2016) Glucocorticoid-induced osteoporosis. Rheum Dis Clin North Am 42(177–189):x. https://doi.org/10.1016/j.rdc.2015.08.005

    Article  Google Scholar 

  40. Falhammar H, Filipsson H, Holmdahl G et al (2007) Fractures and bone mineral density in adult women with 21-hydroxylase deficiency. J Clin Endocrinol Metab 92:4643–4649. https://doi.org/10.1210/jc.2007-0744

    Article  CAS  PubMed  Google Scholar 

  41. Cummings SR, Black DM, Nevitt MC et al (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75. https://doi.org/10.1016/0140-6736(93)92555-8

    Article  CAS  PubMed  Google Scholar 

  42. Benedetti MG, Furlini G, Zati A, Letizia Mauro G (2018) The effectiveness of physical exercise on bone density in osteoporotic patients. BioMed Res Int 2018:4840531. https://doi.org/10.1155/2018/4840531

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bakker I, Twisk JWR, Van Mechelen W, Kemper HCG (2003) Fat-free body mass is the most important body composition determinant of 10-yr longitudinal development of lumbar bone in adult men and women. J Clin Endocrinol Metab 88:2607–2613. https://doi.org/10.1210/jc.2002-021538

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the participants who gave their time and effort to participate in the study.

Funding

This work was supported by the São Paulo Research Foundation (FAPESP-2011/23460–1 and 2012/16778–8) and the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES/PNPD — 88887.360763/2019–00).

Author information

Authors and Affiliations

Authors

Contributions

JHB, GG, and EMG conceived and designed the analysis. DMO, SHVL, and EMG collected the data. All authors contributed to data analysis and interpretation. JHB, GG, and EMG drafted the manuscript, and all authors provided critical revisions. All authors gave final approval of the version of the manuscript submitted for publication.

Corresponding author

Correspondence to Juliano Henrique Borges.

Ethics declarations

Ethics approval

The Research Ethics Committee of the State University of Campinas (UNICAMP) (number 768/2007) approved the procedures according to the Declaration of Helsinki for studies involving humans.

Consent to participate

All subjects provided informed consent.

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, J.H., de Oliveira, D.M., de Lemos-Marini, S.H.V. et al. Normal bone health in young adults with 21-hydroxylase enzyme deficiency undergoing glucocorticoid replacement therapy. Osteoporos Int 33, 283–291 (2022). https://doi.org/10.1007/s00198-021-06097-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-021-06097-w

Keywords

Navigation