Skip to main content
Log in

Association of serum 25(OH)Vit-D levels with risk of pediatric fractures: a systematic review and meta-analysis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The association between the risk of fractures and suboptimal vitamin D (Vit-D) status remains controversial in children. This meta-analysis suggested that serum 25(OH)Vit-D levels were lower in pediatric cases with fractures. 25-hydroxyvitamin D (25(OH)Vit-D) levels less than 50 nmol/L were associated with increased fracture risk in children.

Introduction

This study aimed to assess the association between serum 25(OH)Vit-D and the risk of fractures in children, and to explore the sources of heterogeneity and investigate their impact on results.

Methods

Systematic review and meta-analysis were conducted for observational studies comparing serum 25(OH)Vit-D levels between fracture and non-fracture pediatric cases. The quality of the included studies was assessed using the Newcastle-Ottawa Scale (NOS).

Results

Analysis on 17 case-control and 6 cross-sectional studies (2929 fracture cases and 5000 controls) suggested that 25(OH)Vit-D was lower in fracture cases than in controls (pooled mean difference (MD) = − 3.51 nmol/L; 95% confidence interval (CI): − 5.60 to − 1.42) with a heterogeneity (I2) of 73.9%. The sensitivity analysis which merged the case-control studies that had a NOS score ≥ 4 showed a pooled MD of − 4.35 nmol/L (95% CI: − 6.64 to − 2.06) with a heterogeneity (I2) of 35.9%. Pooled odds ratio of fracture in subjects with 25(OH)Vit-D ≤ 50 nmol/L compared to subjects with 25(OH)Vit-D > 50 nmol/L was 1.29 (95% CI: 1.10 to 1.53; I2 < 1%).

Conclusion

This study indicated that serum 25(OH)Vit-D levels were lower in pediatric patients with fractures. 25(OH)Vit-D ≤ 50 nmol/L was associated with increased fracture risk in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jones IE, Williams SM, Dow N, Goulding A (2002) How many children remain fracture-free during growth? A longitudinal study of children and adolescents participating in the Dunedin Multidisciplinary Health and Development Study. Osteoporos Int 13(12):990–995. https://doi.org/10.1007/s001980200137

    Article  CAS  PubMed  Google Scholar 

  2. Khosla S, Melton LJ 3rd, Dekutoski MB, Achenbach SJ, Oberg AL, Riggs BL (2003) Incidence of childhood distal forearm fractures over 30 years: a population-based study. JAMA 290(11):1479–1485. https://doi.org/10.1001/jama.290.11.1479

    Article  CAS  PubMed  Google Scholar 

  3. Clark EM, Ness AR, Tobias JH (2008) Bone fragility contributes to the risk of fracture in children, even after moderate and severe trauma. J Bone Miner Res 23(2):173–179. https://doi.org/10.1359/jbmr.071010

    Article  PubMed  Google Scholar 

  4. Buttazzoni C, Rosengren BE, Tveit M, Landin L, Nilsson JA, Karlsson MK (2013) Does a childhood fracture predict low bone mass in young adulthood? A 27-year prospective controlled study. J Bone Miner Res 28(2):351–359. https://doi.org/10.1002/jbmr.1743

    Article  PubMed  Google Scholar 

  5. Amin S, Melton LJ 3rd, Achenbach SJ, Atkinson EJ, Dekutoski MB, Kirmani S, Fischer PR, Khosla S (2013) A distal forearm fracture in childhood is associated with an increased risk for future fragility fractures in adult men, but not women. J Bone Miner Res 28(8):1751–1759. https://doi.org/10.1002/jbmr.1914

    Article  PubMed  Google Scholar 

  6. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281. https://doi.org/10.1056/NEJMra070553

    Article  CAS  PubMed  Google Scholar 

  7. Rosen CJ (2011) Clinical practice. Vitamin D insufficiency. N Engl J Med 364(3):248–254. https://doi.org/10.1056/NEJMcp1009570

    Article  CAS  PubMed  Google Scholar 

  8. Cheung TF, Cheuk KY, Yu FW, Hung VW, Ho CS, Zhu TY, Ng BK, Lee KM, Qin L, Ho SS, Wong GW, Cheng JC, Lam TP (2016) Prevalence of vitamin D insufficiency among adolescents and its correlation with bone parameters using high-resolution peripheral quantitative computed tomography. Osteoporos Int 27(8):2477–2488. https://doi.org/10.1007/s00198-016-3552-4

    Article  CAS  PubMed  Google Scholar 

  9. Park JH, Hong IY, Chung JW, Choi HS (2018) Vitamin D status in South Korean population: seven-year trend from the KNHANES. Medicine (Baltimore) 97(26):e11032. https://doi.org/10.1097/MD.0000000000011032

    Article  CAS  Google Scholar 

  10. Gorter EA, Oostdijk W, Felius A, Krijnen P, Schipper IB (2016) Vitamin D deficiency in pediatric fracture patients: prevalence, risk factors, and vitamin D supplementation. J Clin Res Pediatr Endocrinol 8(4):445–451. https://doi.org/10.4274/jcrpe.3474

    Article  PubMed  PubMed Central  Google Scholar 

  11. Saglam Y, Kizildag H, Toprak G, Alp NB, Yalcinkaya EY (2017) Prevalence of vitamin D insufficiency in children with forearm fractures. J Child Orthop 11(3):180–184. https://doi.org/10.1302/1863-2548.11.160008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ryan LM, Teach SJ, Singer SA, Wood R, Freishtat R, Wright JL, McCarter R, Tosi L, Chamberlain JM (2012) Bone mineral density and vitamin D status among African American children with forearm fractures. Pediatrics 130(3):e553–e560. https://doi.org/10.1542/peds.2012-0134

    Article  PubMed  PubMed Central  Google Scholar 

  13. Karpinski M, Galicka A, Milewski R, Popko J, Badmaev V, Stohs SJ (2017) Association between vitamin D receptor polymorphism and serum vitamin D levels in children with low-energy fractures. J Am Coll Nutr 36(1):64–71. https://doi.org/10.1080/07315724.2016.1218803

    Article  CAS  PubMed  Google Scholar 

  14. Ramirez N, Ortiz-Fullana JL, Arciniegas N, Fullana A, Valentin P, Orengo JC, Iriarte I, Carlo S (2019) Vitamin D levels and fracture risk among Hispanic children. Eur J Orthop Surg Traumatol 29(3):531–536. https://doi.org/10.1007/s00590-018-2315-7

    Article  PubMed  Google Scholar 

  15. Alonso MA, Mantecon L, Santos F (2019) Vitamin D deficiency in children: a challenging diagnosis! Pediatr Res 85(5):596–601. https://doi.org/10.1038/s41390-019-0289-8

    Article  CAS  PubMed  Google Scholar 

  16. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM, Endocrine S (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930. https://doi.org/10.1210/jc.2011-0385

    Article  CAS  PubMed  Google Scholar 

  17. Winzenberg T, Powell S, Shaw KA, Jones G (2011) Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. BMJ 342:c7254. https://doi.org/10.1136/bmj.c7254

    Article  PubMed  PubMed Central  Google Scholar 

  18. El-Hajj Fuleihan G, Nabulsi M, Tamim H, Maalouf J, Salamoun M, Khalife H, Choucair M, Arabi A, Vieth R (2006) Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial. J Clin Endocrinol Metab 91(2):405–412. https://doi.org/10.1210/jc.2005-1436

    Article  CAS  PubMed  Google Scholar 

  19. Molgaard C, Larnkjaer A, Cashman KD, Lamberg-Allardt C, Jakobsen J, Michaelsen KF (2010) Does vitamin D supplementation of healthy Danish Caucasian girls affect bone turnover and bone mineralization? Bone 46(2):432–439. https://doi.org/10.1016/j.bone.2009.08.056

    Article  CAS  PubMed  Google Scholar 

  20. Greene DA, Naughton GA (2011) Calcium and vitamin-D supplementation on bone structural properties in peripubertal female identical twins: a randomised controlled trial. Osteoporos Int 22(2):489–498. https://doi.org/10.1007/s00198-010-1317-z

    Article  CAS  PubMed  Google Scholar 

  21. Karlsland Akeson P, Akesson KE, Lind T, Hernell O, Silfverdal SA, Ohlund I (2018) Vitamin D intervention and bone: a randomized clinical trial in fair- and dark-skinned children at northern latitudes. J Pediatr Gastroenterol Nutr 67(3):388–394. https://doi.org/10.1097/MPG.0000000000002031

    Article  CAS  PubMed  Google Scholar 

  22. Khadilkar AV, Sayyad MG, Sanwalka NJ, Bhandari DR, Naik S, Khadilkar VV, Mughal MZ (2010) Vitamin D supplementation and bone mass accrual in underprivileged adolescent Indian girls. Asia Pac J Clin Nutr 19(4):465–472

    CAS  PubMed  Google Scholar 

  23. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012. https://doi.org/10.1001/jama.283.15.2008

    Article  CAS  PubMed  Google Scholar 

  24. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  25. Avenell A, Mak JC, O’Connell D (2014) Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst Rev 4:CD000227. https://doi.org/10.1002/14651858.CD000227.pub4

    Article  Google Scholar 

  26. Ells LJ, Mead E, Atkinson G, Corpeleijn E, Roberts K, Viner R, Baur L, Metzendorf MI, Richter B (2015) Surgery for the treatment of obesity in children and adolescents. Cochrane Database Syst Rev 6:CD011740. https://doi.org/10.1002/14651858.CD011740

    Article  Google Scholar 

  27. Wells G SB, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P (2013) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.:http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

  28. Viechtbauer W Conducting meta-analyses in R with the metafor package. J Stat Softw 36 (3):1–48

  29. Fleiss JLB, J (2009) Effect sizes for dichotomous data. The handbook of research synthesis and meta-analysis (2nd ed):237-253

  30. Borenstein M (2009) Effect sizes for continuous data. The handbook of research synthesis and meta-analysis(2nd ed):221-235

  31. DerSimonian R, Kacker R (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 28(2):105–114. https://doi.org/10.1016/j.cct.2006.04.004

    Article  PubMed  Google Scholar 

  32. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188. https://doi.org/10.1016/0197-2456(86)90046-2

    Article  CAS  PubMed  Google Scholar 

  33. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135. https://doi.org/10.1186/1471-2288-14-135

    Article  PubMed  PubMed Central  Google Scholar 

  34. El-Sakka A, Penon C, Hegazy A, Elbatrawy S, Gobashy A, Moreira A (2016) Evaluating bone health in Egyptian children with forearm fractures: a case control study. Int J Pediatr 2016:7297092–7297096. https://doi.org/10.1155/2016/7297092

    Article  PubMed  PubMed Central  Google Scholar 

  35. Anderson LN, Heong SW, Chen Y, Thorpe KE, Adeli K, Howard A, Sochett E, Birken CS, Parkin PC, Maguire JL, Collaboration TAK (2017) Vitamin D and fracture risk in early childhood: a case-control study. Am J Epidemiol 185(12):1255–1262. https://doi.org/10.1093/aje/kww204

    Article  PubMed  PubMed Central  Google Scholar 

  36. Popko J, Karpinski M, Chojnowska S, Maresz K, Milewski R, Badmaev V, Schurgers LJ (2018) Decreased levels of circulating carboxylated osteocalcin in children with low energy fractures: a pilot study. Nutrients 10(6). https://doi.org/10.3390/nu10060734

  37. Minkowitz B, Cerame B, Poletick E, Nguyen JT, Formoso ND, Luxenberg SL, Lee BH, Lane JM, Morris-Essex Pediatric Bone Health G (2017) Low vitamin D levels are associated with need for surgical correction of pediatric fractures. J Pediatr Orthop 37(1):23–29. https://doi.org/10.1097/BPO.0000000000000587

    Article  PubMed  Google Scholar 

  38. Thompson RM, Dean DM, Goldberg S, Kwasny MJ, Langman CB, Janicki JA (2017) Vitamin D insufficiency and fracture risk in urban children. J Pediatr Orthop 37(6):368–373. https://doi.org/10.1097/BPO.0000000000000697

    Article  PubMed  Google Scholar 

  39. Ceroni D, Anderson de la Llana R, Martin X, Lamah L, De Coulon G, Turcot K, Dubois-Ferriere V (2012) Prevalence of vitamin D insufficiency in Swiss teenagers with appendicular fractures: a prospective study of 100 cases. J Child Orthop 6(6):497–503. https://doi.org/10.1007/s11832-012-0446-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Olney RC, Mazur JM, Pike LM, Froyen MK, Ramirez-Garnica G, Loveless EA, Mandel DM, Hahn GA, Neal KM, Cummings RJ (2008) Healthy children with frequent fractures: how much evaluation is needed? Pediatrics 121(5):890–897. https://doi.org/10.1542/peds.2007-2079

    Article  PubMed  Google Scholar 

  41. Contreras JJ, Hiestand B, O’Neill JC, Schwartz R, Nadkarni M (2014) Vitamin D deficiency in children with fractures. Pediatr Emerg Care 30(11):777–781. https://doi.org/10.1097/PEC.0000000000000258

    Article  PubMed  Google Scholar 

  42. Liu T, Wang E, Li Q, Li L (2019) High prevalence of vitamin D insufficiency in Chinese children with upper limb fractures. Genes Dis 7:408–413. https://doi.org/10.1016/j.gendis.2019.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mayranpaa MK, Viljakainen HT, Toiviainen-Salo S, Kallio PE, Makitie O (2012) Impaired bone health and asymptomatic vertebral compressions in fracture-prone children: a case-control study. J Bone Miner Res 27(6):1413–1424. https://doi.org/10.1002/jbmr.1579

    Article  PubMed  Google Scholar 

  44. Jahmani R, Raffee L, Ali AMB, Alorjani M, Bashaireh KM, Ziad A, Radaideh A (2017) Associated of vitamin D level with children fractures: a prospective cohort study. Res J Med Sci 11(5-6):208–211

    Google Scholar 

  45. Chan GM, Hess M, Hollis J, Book LS (1984) Bone mineral status in childhood accidental fractures. Am J Dis Child 138(6):569–570. https://doi.org/10.1001/archpedi.1984.02140440053013

    Article  CAS  PubMed  Google Scholar 

  46. Delshad M, Beck KL, Conlon CA, Mugridge O, Kruger MC, von Hurst PR (2020) Fracture risk factors among children living in New Zealand. J Steroid Biochem Mol Biol 200:105655. https://doi.org/10.1016/j.jsbmb.2020.105655

    Article  CAS  PubMed  Google Scholar 

  47. Nicolas G.; Hoyek F.;Assaf E.; Akiki S (2018) Low level of vitamin D increases the risk of low energy fractures in children. 10th Excellence in Pediatrics Conference 5 (1):92-93. doi:https://www.cogentoa.com/article/10.1080/2331205X.2018.1544190

  48. Al-Daghri NM, Aljohani N, Rahman S, Sabico S, Al-Attas OS, Alokail MS, Al-Ajlan A, Chrousos GP (2016) Serum 25-hydroxyvitamin D status among Saudi children with and without a history of fracture. J Endocrinol Investig 39(10):1125–1130. https://doi.org/10.1007/s40618-016-0496-7

    Article  CAS  Google Scholar 

  49. Younes N, El Hajj MA, Bizdikian AJ, Gannage-Yared MH (2019) An epidemiological evaluation of fractures and its determinants among Lebanese schoolchildren: a cross-sectional study. Arch Osteoporos 14(1):9. https://doi.org/10.1007/s11657-019-0559-4

    Article  PubMed  Google Scholar 

  50. Jeddi M, Dabbaghmanesh MH, Kharmandar A, Ranjbar Omrani G, Bakhshayeshkaram M (2017) Prevalence of fracture in healthy Iranian children aged 9-18 years and associated risk factors; a population based study. Bull Emerg Trauma 5(1):29–35

    PubMed  PubMed Central  Google Scholar 

  51. Merwin S, Avarello J, Olson A, Crabb R, Lesser M, Poon S (2017) Environmental effects on serum vitamin D and parathyroid level variability in pediatric patients with acute fracture vs. healthy controls. Conference: World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Diseases, WCO-IOF-ESCEO 28:S218. doi:https://doi-org.easyaccess2.lib.cuhk.edu.hk/10.1007/s00198-017-3950-2

  52. Crabb R, Poon S, Olson A, Merwin S, Gecelter R, Wendolowski S, Philip J, Fishbein J, Avarello J (2017) The role and interactions of 25-OHD, parathyroid hormone, and serum calcium in pediatric patients with fractures compared with healthy controls. Journal of Bone and Mineral Research Conference: 2016 Annual Meeting of the American Society for Bone and Mineral Research 31:no pagination. doi: https://doi-org.easyaccess2.lib.cuhk.edu.hk/10.1002/jbmr.3107

  53. Kimlin MG, Olds WJ, Moore MR (2007) Location and vitamin D synthesis: is the hypothesis validated by geophysical data? J Photochem Photobiol B 86(3):234–239. https://doi.org/10.1016/j.jphotobiol.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  54. Rivas M, Rojas E, Calaf GM, Barberan M, Liberman C, De Paula CM (2017) Association between non-melanoma and melanoma skin cancer rates, vitamin D and latitude. Oncol Lett 13(5):3787–3792. https://doi.org/10.3892/ol.2017.5898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman JA, El-Hajj Fuleihan G, Josse RG, Lips P, Morales-Torres J, Group IOFCoSANW (2009) Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 20(11):1807–1820. https://doi.org/10.1007/s00198-009-0954-6

    Article  CAS  PubMed  Google Scholar 

  56. Briggs AD, Kuan V, Greiller CL, Maclaughlin BD, Ramachandran M, Harris T, Timms PM, Venton TR, Vieth R, Norman AW, Griffiths CJ, Martineau AR (2013) Longitudinal study of vitamin D metabolites after long bone fracture. J Bone Miner Res 28(6):1301–1307. https://doi.org/10.1002/jbmr.1855

    Article  CAS  PubMed  Google Scholar 

  57. Cheuk KY, Wang XF, Wang J, Zhang Z, Yu FWP, Tam EMS, Hung VWY, Lee WYW, Ghasem-Zadeh A, Zebaze R, Zhu TY, Guo XE, Cheng JCY, Lam TP, Seeman E (2018) Sexual dimorphism in cortical and trabecular bone microstructure appears during puberty in Chinese children. J Bone Miner Res 33(11):1948–1955. https://doi.org/10.1002/jbmr.3551

    Article  CAS  PubMed  Google Scholar 

  58. Bala Y, Bui QM, Wang XF, Iuliano S, Wang Q, Ghasem-Zadeh A, Rozental TD, Bouxsein ML, Zebaze RM, Seeman E (2015) Trabecular and cortical microstructure and fragility of the distal radius in women. J Bone Miner Res 30(4):621–629. https://doi.org/10.1002/jbmr.2388

    Article  PubMed  Google Scholar 

  59. Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, Makitie O, Munns CF, Shaw N, International Society of Clinical D (2014) Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J Clin Densitom 17(2):275–280. https://doi.org/10.1016/j.jocd.2014.01.004

    Article  PubMed  Google Scholar 

  60. Wasserman H, Gordon CM (2017) Bone mineralization and fracture risk assessment in the pediatric population. J Clin Densitom 20(3):389–396. https://doi.org/10.1016/j.jocd.2017.06.007

    Article  PubMed  Google Scholar 

  61. Rauch F, Plotkin H, DiMeglio L, Engelbert RH, Henderson RC, Munns C, Wenkert D, Zeitler P (2008) Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2007 Pediatric Official Positions. J Clin Densitom 11(1):22–28. https://doi.org/10.1016/j.jocd.2007.12.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Qiangqiang Li for his kind support in literature search and data extraction.

Availability of data and material

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.P. Lam.

Ethics declarations

Conflict of interest

None.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1053 kb)

ESM 2

(DOC 65.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Lee, W., Hung, A. et al. Association of serum 25(OH)Vit-D levels with risk of pediatric fractures: a systematic review and meta-analysis. Osteoporos Int 32, 1287–1300 (2021). https://doi.org/10.1007/s00198-020-05814-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-020-05814-1

Keywords

Navigation