Skip to main content
Log in

Coexistence of osteoporosis and atherosclerosis in pheochromocytoma: new insights into its long-term management

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Osteoporosis and atherosclerosis frequently coexist in patients with pheochromocytoma. The presence of osteoporosis may predict that of atherosclerosis and vice versa in patients with PHEO. These findings have implications for the long-term management of the pheochromocytoma and its potential chronic complications.

Introduction

Pheochromocytoma (PHEO), a catecholamine-producing tumor, is often found incidentally, and it may be present for years before it is diagnosed. However, long-term exposure to catecholamines excess may induce chronic complications, such as osteoporosis and atherosclerosis. We aimed to evaluate concomitant osteoporosis and atherosclerosis in patients with PHEO.

Methods

Fifty-one patients with PHEO and 51 patients with a non-functional adrenal tumor were compared radiographically for the prevalence of vertebral fracture (VF), a typical osteoporotic fracture, and abdominal aortic calcification (AAC).

Results

In patients with PHEO, the prevalence of AAC was higher in those with VF (58%) than in those without (6%, p < 0.001). AAC was associated with VF after adjusting for age and sex (odds ratio, 1.53; 95% confidence interval, 1.07–2.46; p = 0.003) in patients with PHEO. The degree of catecholamine excess correlated with the presence of VF and AAC (p = 0.007). The prevalence of VF was higher in patients with PHEO (37%) than those with non-functional AT (12%, p = 0.005), but the prevalence of AAC was comparable between the two groups (25% and 19%, p = 0.636). VF and AAC more frequently coexisted in patients with PHEO (22%) than in those with non-functional AT (2%, p = 0.003).

Conclusion

This study represents the first demonstration that osteoporosis and atherosclerosis frequently coexist in patients with PHEO. The presence of osteoporosis may predict that of atherosclerosis and vice versa in patients with PHEO. These findings have implications for the long-term management of the PHEO and its potential chronic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lenders JW, Eisenhofer G, Mannelli M, Pacak K (2005) Phaeochromocytoma. Lancet 366:665–675

    Article  Google Scholar 

  2. Neumann HPH, Young WF Jr, Eng C (2019) Pheochromocytoma and paraganglioma. N Engl J Med 381:552–565

    Article  CAS  Google Scholar 

  3. Gruber LM, Hartman RP, Thompson GB, McKenzie TJ, Lyden ML et al (2019) Pheochromocytoma characteristics and behavior differ depending on method of discovery. J Clin Endocrinol Metab 104:1386–1393

    Article  Google Scholar 

  4. Yokomoto-Umakoshi M, Umakoshi H, Fukumoto T, Matsuda Y, Nagata H, Ogata M, Kawate H, Miyazawa T, Sakamoto R, Ogawa Y, Q-AND-A study group (2020) Pheochromocytoma and paraganglioma: an emerging cause of secondary osteoporosis. Bone 115221. doi: https://doi.org/10.1016/j.bone.2020.115221

  5. Petrák O, Rosa J, Holaj R, Štrauch B, Krátká Z, Kvasnička J, Klímová J, Waldauf P, Hamplová B, Markvartová A, Novák K, Michalský D, Widimský J Jr, Zelinka T (2019) Blood pressure profile, catecholamine phenotype, and target organ damage in pheochromocytoma/paraganglioma. J Clin Endocrinol Metab 104:5170–5180

    Article  Google Scholar 

  6. Petrák O, Štrauch B, Zelinka T, Rosa J, Holaj R, Vránková A, Kasalický M, Kvasnička J, Pacák K, Widimský J Jr (2010) Factors influencing arterial stiffness in pheochromocytoma and effect of adrenalectomy. Hypertens Res 33:454–459

    Article  Google Scholar 

  7. Bernini G, Franzoni F, Galetta F, Moretti A, Taurino C, Bardini M, Santoro G, Ghiadoni L, Bernini M, Salvetti A (2006) Carotid vascular remodeling in patients with pheochromocytoma. J Clin Endocrinol Metab 91:1754–1760

    Article  CAS  Google Scholar 

  8. Majtan B, Zelinka T, Rosa J, Petrák O, Krátká Z, Štrauch B, Tuka V, Vránková A, Michalský D, Novák K, Wichterle D, Widimský J Jr, Holaj R (2017) Long-term effect of adrenalectomy on cardiovascular remodeling in patients with pheochromocytoma. J Clin Endocrinol Metab 102:1208–1217

    PubMed  Google Scholar 

  9. Bernini G, Galetta F, Franzoni F, Bardini M, Taurino C, Moretti A, Bernini M, Berti P, Miccoli P, Salvetti A (2008) Normalization of catecholamine production following resection of pheochromocytoma positively influences carotid vascular remodeling. Eur J Endocrinol 159:137–143

    Article  CAS  Google Scholar 

  10. Holaj R, Zelinka T, Wichterle D, Petrák O, Štrauch B, Vránková A, Majtan B, Spáčil J, Malik J, Widimský J Jr (2009) Increased carotid intima-media thickness in patients with pheochromocytoma in comparison to essential hypertension. J Hum Hypertens 23:350–358

    Article  CAS  Google Scholar 

  11. Bonnet N, Laroche N, Vico L, Dolleans E, Benhamou CL, Courteix D (2006) Dose effects of propranolol on cancellous and cortical bone in ovariectomized adult rats. J Pharmacol Exp Ther 318:1118–1127

    Article  CAS  Google Scholar 

  12. Kondo H, Togari A (2011) Continuous treatment with a low-dose β-agonist reduces bone mass by increasing bone resorption without suppressing bone formation. Calcif Tissue Int 88:23–32

    Article  CAS  Google Scholar 

  13. Takeda S, Elefteriou F, Levasscur R, Liu X, Zhao L et al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    Article  CAS  Google Scholar 

  14. Zelinka T, Petrák O, Turková H, Holaj R, Štrauch B et al (2012) High incidence of cardiovascular complications in pheochromocytoma. Horm Metab Res 44:379–384

    Article  CAS  Google Scholar 

  15. Ferreira VM, Marcelino M, Piechnik SK, Marini C, Karamitsos TD, Ntusi NAB, Francis JM, Robson MD, Arnold JR, Mihai R, Thomas JDJ, Herincs M, Hassan-Smith ZK, Greiser A, Arlt W, Korbonits M, Karavitaki N, Grossman AB, Wass JAH, Neubauer S (2016) Pheochromocytoma is characterized by catecholamine-mediated myocarditis, focal and diffuse myocardial fibrosis, and myocardial dysfunction. J Am Coll Cardiol 67:2364–2374

    Article  CAS  Google Scholar 

  16. Kendler DL, Bauer DC, Davison KS et al (2016) Vertebral fractures: clinical importance and management. Am J Med 129:e1–e10

    Article  Google Scholar 

  17. Bagger YZ, Tankó LB, Alexandersen P, Qin G, Christiansen C (2006) Prospective epidemiological risk factors study group, radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J Intern Med 259:598–605

    Article  CAS  Google Scholar 

  18. Ensrud KE, Crandall CJ (2017) Osteoporosis. Ann Intern Med 167:ITC17–ITC32

    Article  Google Scholar 

  19. Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH, Naruse M, Pacak K, Young WF Jr, Endocrine Society (2014) Pheochromocytoma and paraganglioma: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 99:1915–1942

    Article  CAS  Google Scholar 

  20. Hamidi O, Young WF Jr, Iñiguez-Ariza NM, Kittah NE, Gruber L, Bancos C, Tamhane S, Bancos I (2017) Malignant pheochromocytoma and paraganglioma: 272 patients over 55 years. J Clin Endocrinol Metab 102:3296–3305

    Article  Google Scholar 

  21. Genant HK, Wu CY, van Kujik C et al (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Article  CAS  Google Scholar 

  22. Kauppila LI, Polak JF, Cupples LA, Hannan MT, Kiel DP, Wilson PW (1997) New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis 132:245–250

    Article  CAS  Google Scholar 

  23. Ogawa-Furuya N, Yamaguchi T, Yamamoto M, Kanazawa I, Sugimoto T (2013) Serum osteocalcin levels are inversely associated with abdominal aortic calcification in men with type 2 diabetes mellitus. Osteoporos Int 24:2223–2230

    Article  CAS  Google Scholar 

  24. Matsuda Y, Kawate H, Matsuzaki C, Sakamoto R, Shibue K, Ohnaka K, Anzai K, Nomura M, Takayanagi R (2016) Eplerenone improves carotid intima-media thickness (IMT) in patients with primary aldosteronism. Endocr J 63:249–255

    Article  CAS  Google Scholar 

  25. Matsuda Y, Kawate H, Matsuzaki C, Sakamoto R, Abe I, Shibue K, Kohno M, Adachi M, Ohnaka K, Nomura M, Takayanagi R (2013) Reduced arterial stiffness in patients with acromegaly: non-invasive assessment by the cardio-ankle vascular index (CAVI). Endocr J 60:29–36

    Article  CAS  Google Scholar 

  26. Jiang Y, Fan Z, Wang Y, Suo C, Cui M, Yuan Z, Tian W, Fan M, Zhang D, Wang X, Jin L, Ye W, Li S, Chen X (2018) Low bone mineral density is not associated with subclinical atherosclerosis: a population-based study in rural China. Cardiology 141:78–87

    Article  Google Scholar 

  27. Ojima S, Kubozono T, Kawasoe S, Kawabata T, Miyata M, Miyahara H, Maenohara S, Ohishi M (2020) Association of risk factors for atherosclerosis, including high-sensitivity C-reactive protein, with carotid intima-media thickness, plaque score, and pulse wave velocity in a male population. Hypertens Res 43:422–430

    Article  CAS  Google Scholar 

  28. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458

    Article  CAS  Google Scholar 

  29. Veldhuis-Vlug AG, EI Mahdiui M, Endert E et al (2012) Bone resorption is increased in pheochromocytoma patients and normalizes following adrenalectomy. J Clin Endocrinol Metab 97:E2093–E2097

    Article  CAS  Google Scholar 

  30. Kim BJ, Kwak MK, Kim JS et al (2017) Lower bone mass and higher bone resorption in pheochromocytoma: importance of sympathetic activity on human bone. J Clin Endocrinol Metab 102:2711–2718

    Article  Google Scholar 

  31. Thompson B, Towler DA (2012) Arterial calcification and bone physiology: role of the bone-vascular axis. Nat Rev Endocrinol 8:529–543

    Article  CAS  Google Scholar 

  32. Uemura T, Ohta Y, Nakao Y, Manaka T, Nakamura H, Takaoka K (2010) Epinephrine accelerates osteoblastic differentiation by enhancing bone morphogenetic protein signaling thorough a cAMP/protein kinase a signaling pathway. Bone 47:756–765

    Article  CAS  Google Scholar 

  33. Tankó LB, Christiansen C, Cox DA, Geiger MJ, McNabb MA et al (2005) Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res 20:1912–1920

    Article  Google Scholar 

  34. Chiang CH, Liu CJ, Chen PJ, Huang CC, Hsu CY (2013) Hip fracture and risk of acute myocardial infarction: a nationwide study. J Bone Miner Res 28:404–411

    Article  Google Scholar 

  35. Lewis JR, Eggermont CJ, Schousboe JT, Lim WH, Wong G, Khoo B, Sim M, Yu MX, Ueland T, Bollerslev J, Hodgson JM, Zhu K, Wilson KE, Kiel DP, Prince RL (2019) Association between abdominal aortic calcification, bone mineral density, and fracture in older women. J Bone Miner Res 34:2052–2060

    Article  Google Scholar 

  36. Szulc P (2016) Abdominal aortic calcification: a reappraisal of epidemiological and pathophysiological data. Bone 84:25–37

    Article  CAS  Google Scholar 

  37. Balasubramanian P, Hall D, Subramanian M (2019) Sympathetic nervous system as a target for aging and obesity-related cardiovascular diseases. Geroscience 41:13–24

    Article  CAS  Google Scholar 

  38. de Lucia C, Piedepalumbo M, Paolisso G, Koch WJ (2019) Sympathetic nervous system in age-related cardiovascular dysfunction: pathophysiology and therapeutic perspective. Int J Biochem Cell Biol 108:29–33

    Article  Google Scholar 

  39. Khosla S, Drake MT, Volkman TL, Thicke BS, Achenbach SJ, Atkinson EJ, Joyner MJ, Rosen CJ, Monroe DG, Farr JN (2018) Sympatetic β1-adrenergic signaling contributes to regulation of human bone metabolism. J Clin Invest 128:4832–4842

    Article  Google Scholar 

Download references

Acknowledgments

We thank for Ms. Chitose Matsuzaki for technical assistance. We also thank the medical staff of Kyushu University Hospital Department of Endocrinology, Metabolism, and Diabetes for their support. Finally, we thank Mark Cleasby, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

This work was supported by the Kyushu University Research Activity Support Program, Support for Women Returning from Maternity and Parental Leave.

Availability of data and material

The datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to H. Umakoshi or Y. Ogawa.

Ethics declarations

Conflicts of interest

None.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokomoto-Umakoshi, M., Umakoshi, H., Ogata, M. et al. Coexistence of osteoporosis and atherosclerosis in pheochromocytoma: new insights into its long-term management. Osteoporos Int 31, 2151–2160 (2020). https://doi.org/10.1007/s00198-020-05527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-020-05527-5

Keywords

Navigation