Skip to main content
Log in

Discrimination of osteoporosis-related vertebral fractures by DXA-derived 3D measurements: a retrospective case-control study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

A retrospective case-control study assessing the association of DXA-derived 3D measurements with osteoporosis-related vertebral fractures was performed. Trabecular volumetric bone mineral density was the measurement that best discriminates between fracture and control groups.

Introduction

The aim of the present study was to evaluate the association of DXA-derived 3D measurements at the lumbar spine with osteoporosis-related vertebral fractures.

Methods

We retrospectively analyzed a database of 74 postmenopausal women: 37 subjects with incident vertebral fractures and 37 age-matched controls without any type of fracture. DXA scans at the lumbar spine were acquired at baseline (i.e., before the fracture event for subjects in the fracture group), and areal bone mineral density (aBMD) was measured. DXA-derived 3D measurements, such as volumetric BMD (vBMD), were assessed using a DXA-based 3D modeling software (3D-SHAPER). vBMD was computed at the trabecular, cortical, and integral bone. Cortical thickness and cortical surface BMD were also measured. Differences in DXA-derived measurements between fracture and control groups were evaluated using unpaired t test. Odds ratio (OR) and area under the receiver operating curve (AUC) were also computed. Subgroup analyses according to fractured vertebra were performed.

Results

aBMD of fracture group was 9.3% lower compared with control group (p < 0.01); a higher difference was found for trabecular vBMD in the vertebral body (− 16.1%, p < 0.001). Trabecular vBMD was the measurement that best discriminates between fracture and control groups, with an AUC of 0.733, against 0.682 for aBMD. Overall, similar findings were observed within the subgroup analyses. The L1 vertebral fractures subgroup had the highest AUC at trabecular vBMD (0.827), against aBMD (0.758).

Conclusion

This study showed the ability of cortical and trabecular measurements from DXA-derived 3D models to discriminate between fracture and control groups. Large cohorts need to be analyzed to determine if these measurements could improve fracture risk prediction in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733. https://doi.org/10.1007/s00198-006-0172-4

    Article  CAS  PubMed  Google Scholar 

  2. Ballane G, Cauley JA, Luckey MM, El-Hajj Fuleihan G (2017) Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporos Int 28:1531–1542. https://doi.org/10.1007/s00198-017-3909-3

    Article  CAS  PubMed  Google Scholar 

  3. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767. https://doi.org/10.1016/S0140-6736(02)08657-9

    Article  PubMed  Google Scholar 

  4. Jalava T, Sarna S, Pylkka L et al (2003) Association between vertebral fracture and increased mortality in osteoporotic patients. J Bone Miner Res 18:1254–1259

    Article  PubMed  Google Scholar 

  5. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936. https://doi.org/10.1016/S0140-6736(02)08761-5

    Article  PubMed  Google Scholar 

  6. Kanis JA, Johansson H, Oden A, McCloskey EV (2009) Assessment of fracture risk. Eur J Radiol 71:392–397. https://doi.org/10.1016/j.ejrad.2008.04.061

    Article  PubMed  Google Scholar 

  7. Marshall D, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259. https://doi.org/10.1136/bmj.312.7041.1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siris ES, Chen Y-T, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, Berger ML (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164:1108–1112. https://doi.org/10.1001/archinte.164.10.1108

    Article  PubMed  Google Scholar 

  9. Dimai HP (2017) Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases. Bone 104:39–43. https://doi.org/10.1016/j.bone.2016.12.016

    Article  PubMed  Google Scholar 

  10. Gordon CM, Lang TF, Augat P, Genant HK (1998) Image-based assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos Int 8:317–325. https://doi.org/10.1007/s001980050070

    Article  CAS  PubMed  Google Scholar 

  11. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148. https://doi.org/10.1002/jbmr.5650080915

    Article  CAS  PubMed  Google Scholar 

  12. Prevrhal S, Fox JC, Shepherd JA, Genant HK (2003) Accuracy of CT-based thickness measurement of thin structures : modeling of limited spatial resolution in all three dimensions. Med Phys 30:1–8. https://doi.org/10.1118/1.1521940

    Article  PubMed  Google Scholar 

  13. Li N, Li XM, Xu L, Sun WJ, Cheng XG, Tian W (2013) Comparison of QCT and DXA: osteoporosis detection rates in postmenopausal women. Int J Endocrinol 2013:1–5. https://doi.org/10.1155/2013/895474

    Article  Google Scholar 

  14. Engelke K, Libanati C, Fuerst T, Zysset P, Genant HK (2013) Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep 11:246–255. https://doi.org/10.1007/s11914-013-0147-2

    Article  CAS  PubMed  Google Scholar 

  15. Chalhoub D, Orwoll ES, Cawthon PM, Ensrud KE, Boudreau R, Greenspan S, Newman AB, Zmuda J, Bauer D, Cummings S, Cauley JA, Osteoporotic Fractures in Men (MrOS) Study Research Group (2016) Areal and volumetric bone mineral density and risk of multiple types of fracture in older men. Bone 92:100–106. https://doi.org/10.1016/j.bone.2016.08.014

    Article  PubMed  PubMed Central  Google Scholar 

  16. Melton LJ, Riggs BL, Keaveny TM et al (2007) Structural determinants of vertebral fracture risk. J Bone Miner Res 22:1885–1892. https://doi.org/10.1359/jbmr.070728

    Article  PubMed  Google Scholar 

  17. Anderson DE, Demissie S, Allaire BT, Bruno AG, Kopperdahl DL, Keaveny TM, Kiel DP, Bouxsein ML (2014) The associations between QCT-based vertebral bone measurements and prevalent vertebral fractures depend on the spinal locations of both bone measurement and fracture. Osteoporos Int 25:559–566. https://doi.org/10.1111/j.1743-6109.2008.01122.x.Endothelial

    Article  CAS  PubMed  Google Scholar 

  18. Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, Glüer CC, Lu Y, Chavez M (1997) Comparisons of noninvasive bone mineral measurements in assessing age- related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 12:697–711. https://doi.org/10.1359/jbmr.1997.12.5.697

    Article  CAS  PubMed  Google Scholar 

  19. Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM (2014) Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res 29:570–580. https://doi.org/10.1002/jbmr.2069.Assessment

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang X, Sanyal A, Cawthon P et al (2012) Prediction of new clinical vertebral fractures in elderly men using FEA of CT scans. J Bone Miner Res 27:808–816. https://doi.org/10.1002/jbmr.1539.Prediction

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, Schousboe JT, Engelke K (2015) Clinical use of quantitative computed tomography–based finite element analysis of the hip and spine in the management of osteoporosis in adults: the 2015 ISCD official positions—part II. J Clin Densitom 18:359–392. https://doi.org/10.1016/j.jocd.2015.06.011

    Article  PubMed  Google Scholar 

  22. Imai K, Ohnishi I, Matsumoto T, Yamamoto S, Nakamura K (2009) Assessment of vertebral fracture risk and therapeutic effects of alendronate in postmenopausal women using a quantitative computed tomography-based nonlinear finite element method. Osteoporos Int 20:801–810. https://doi.org/10.1007/s00198-008-0750-8

    Article  CAS  PubMed  Google Scholar 

  23. Ahmad O, Ramamurthi K, Wilson KE, Engelke K, Prince RL, Taylor RH (2010) Volumetric DXA (VXA): a new method to extract 3D information from multiple in vivo DXA images. J Bone Miner Res 25:2744–2751. https://doi.org/10.1002/jbmr.140

    Article  PubMed  Google Scholar 

  24. Väänänen SP, Grassi L, Flivik G, Jurvelin JS, Isaksson H (2015) Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image. Med Image Anal 24:125–134. https://doi.org/10.1016/j.media.2015.06.001

    Article  PubMed  Google Scholar 

  25. Humbert L, Martelli Y, Fonolla R, Steghofer M, di Gregorio S, Malouf J, Romera J, Barquero LMDR (2017) 3D-DXA: assessing the femoral shape, the trabecular macrostructure and the cortex in 3D from DXA images. IEEE Trans Med Imaging 36:27–39. https://doi.org/10.1109/TMI.2016.2593346

    Article  PubMed  Google Scholar 

  26. Whitmarsh T, Humbert L, Del Río Barquero LM et al (2013) 3D reconstruction of the lumbar vertebrae from anteroposterior and lateral dual-energy X-ray absorptiometry. Med Image Anal 17:475–487. https://doi.org/10.1016/j.media.2013.02.002

    Article  PubMed  Google Scholar 

  27. López Picazo M, Magallón Baro A, del Rio Barquero LM et al (2018) 3D subject-specific shape and density estimation of the lumbar spine from a single anteroposterior DXA image including assessment of cortical and trabecular bone. IEEE Trans Med Imaging 37:2651–2662. https://doi.org/10.1109/TMI.2018.2845909

    Article  PubMed  Google Scholar 

  28. Humbert L, Hazrati Marangalou J, Del Río Barquero LM et al (2016) Technical note: cortical thickness and density estimation from clinical CT using a prior thickness-density relationship. Med Phys 43:1945–1954. https://doi.org/10.1118/1.4944501

    Article  PubMed  Google Scholar 

  29. Guglielmi G, Floriani I, Torri V, Li J, van Kuijk C, Genant HK, Lang TF (2005) Effect of spinal degenerative changes on volumetric bone mineral density of the central skeleton as measured by quantitative computed tomography. Acta Radiol 46:269–275. https://doi.org/10.1080/02841850510012661

    Article  CAS  PubMed  Google Scholar 

  30. Eswaran SK, Gupta A, Adams MF, Keaveny TM (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21:307–314. https://doi.org/10.1359/JBMR.051027

    Article  CAS  PubMed  Google Scholar 

  31. Roux JP, Wegrzyn J, Arlot ME, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML (2010) Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex vivo study. J Bone Miner Res 25:356–361. https://doi.org/10.1359/jbmr.090803

    Article  PubMed  Google Scholar 

  32. Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY (2013) Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol 2013:1–9. https://doi.org/10.1155/2013/213234

    Article  Google Scholar 

  33. Treece GM, Gee AH (2015) Independent measurement of femoral cortical thickness and cortical bone density using clinical CT. Med Image Anal 20:249–264. https://doi.org/10.1016/j.media.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  34. Winzenrieth R, Humbert L, Di Gregorio S et al (2018) Effects of osteoporosis drug treatments on cortical and trabecular bone in the femur using DXA-based 3D modeling. Osteoporos Int 29:2323–2333

    Article  CAS  PubMed  Google Scholar 

  35. Van der Klift M, De Laet CE, McCloskey EV et al (2002) The incidence of vertebral fractures in men and women: the Rotterdam Study. J Bone Miner Res 17:1051–1056

    Article  PubMed  Google Scholar 

  36. Budoff MJJ, Khairallah W, Li D et al (2012) Trabecular bone mineral density measurement using thoracic and lumbar quantitative computed tomography. Acad Radiol 19:179–183. https://doi.org/10.1016/j.acra.2011.10.006

    Article  PubMed  Google Scholar 

  37. Noshchenko A, Plaseied A, Patel V et al (2013) Correlation of vertebral strength topography with 3-dimensional computed tomographic structure. Spine (Phila Pa 1976) 38:339–349

    Article  Google Scholar 

  38. Jackman TM, Hussein AI, Adams AM, Makhnejia KK, Morgan EF (2014) Endplate deflection is a defining feature of vertebral fracture and is associated with properties of the underlying trabecular bone. J Orthop Res 32:880–886. https://doi.org/10.1002/jor.22620

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jackman TM, Hussein AI, Curtiss C, Fein PM, Camp A, de Barros L, Morgan EF (2016) Quantitative, 3D visualization of the initiation and progression of vertebral fractures under compression and anterior flexion. J Bone Miner Metab 31:777–788. https://doi.org/10.1002/jbmr.2749

    Article  Google Scholar 

Download references

Funding

We would like to acknowledge the support from the Industrial Doctorates program of the Generalitat de Catalunya, as well as the QUAES Foundation - UPF Chair for Computational Tools for Healthcare. The research leading to these results has also received funding from Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Ministerio de Economía y Competitividad (Reference: RTC-2014-2740-1) and Eurostars program (Project ID: 9 140) funded by Centro para el Desarrollo Tecnológico Industrial, Ministerio de Economía Competitividad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. López Picazo.

Ethics declarations

Conflicts of interest

M. López Picazo is an employee of Galgo Medical. L. Humbert is a stockholder and employee of Galgo Medical. S. Di Gregorio, M. A. González Ballester and L. Del Rio have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López Picazo, M., Humbert, L., Di Gregorio, S. et al. Discrimination of osteoporosis-related vertebral fractures by DXA-derived 3D measurements: a retrospective case-control study. Osteoporos Int 30, 1099–1110 (2019). https://doi.org/10.1007/s00198-019-04894-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-019-04894-y

Keywords

Navigation