Skip to main content

Advertisement

Log in

Is calcium phosphate augmentation a viable option for osteoporotic hip fractures?

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The use of calcium phosphate bone cement has been described to allow for retention of reduction. Therefore, we evaluated whether augmentation with resorbable calcium phosphate could improve fracture stability in osteoporotic hip fractures. The results showed that augmentation with calcium phosphate cement significantly improved the stability of intertrochanteric fractures.

Introduction

The aim with this study was to measure whether augmentation with resorbable calcium phosphate cement could improve fracture stability in osteoporotic hip fractures.

Methods

We retrospectively reviewed 82 patients who underwent closed reduction and internal fixation with proximal femoral nail (PFN) for unstable intertrochanteric fractures between 2014 and 2017. In 42 of 82 patients, patients were treated with a PFN alone (group I). These patients were compared with 40 patients for whom the same device combined with calcium phosphate cement for augmentation was used (group II). Questionnaire surveys or telephone interviews were conducted and patients completed a self-report Harris hip score (HHS) and visual analog scale (VAS) scores. Radiographic outcomes including mean sliding distance of screw, femoral shortening, and varus collapse were compared. Postoperative complications were compared.

Results

Clinical outcomes at 6 months after surgery were equivalent in both groups. Screw sliding, femoral shortening, and varus collapse were all significantly reduced in the cemented group at the last follow-up (p < 0.001, p = 0.005, p < 0.001, respectively). A total of 9 (21%) complications occurred in group I. In contrast, 2 (5%) complications were seen in group II (p = 0.029).

Conclusions

Augmentation with calcium phosphate cement significantly improved the stability of intertrochanteric fractures fixed with a PFN and reduced overall failure rates. We believe augmentation with resorbable calcium phosphate cement for osteoporotic hip fractures is a reasonable option in selected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Namdari S, Rabinovich R, Scolaro J, Baldwin K, Bhandari M, Mehta S (2013) Absorbable and non-absorbable cement augmentation in fixation of intertrochanteric femur fractures: systematic review of the literature. Arch Orthop Trauma Surg 133(4):487–494. https://doi.org/10.1007/s00402-012-1677-2

    Article  PubMed  Google Scholar 

  2. Kyle RF, Cabanela ME, Russell TA, Swiontkowski MF, Winquist RA, Zuckerman JD, Schmidt AH, Koval KJ (1995) Fractures of the proximal part of the femur. Instr Course Lect 44:227–253

    PubMed  CAS  Google Scholar 

  3. Lee PC, Hsieh PH, Chou YC, Wu CC, Chen WJ (2010) Dynamic hip screws for unstable intertrochanteric fractures in elderly patients—encouraging results with a cement augmentation technique. J Trauma 68(4):954–964. https://doi.org/10.1097/TA.0b013e3181c995ec

    Article  PubMed  Google Scholar 

  4. Johal HS, Buckley RE, Le IL, Leighton RK (2009) A prospective randomized controlled trial of a bioresorbable calcium phosphate paste (alpha-BSM) in treatment of displaced intra-articular calcaneal fractures. J Trauma 67(4):875–882. https://doi.org/10.1097/TA.0b013e3181ae2d50

    Article  PubMed  CAS  Google Scholar 

  5. Ng VY, Granger JF, Ellis TJ (2010) Calcium phosphate cement to prevent collapse in avascular necrosis of the femoral head. Med Hypotheses 74(4):725–726. https://doi.org/10.1016/j.mehy.2009.10.039

    Article  PubMed  CAS  Google Scholar 

  6. Russell TA, Leighton RK, Alpha BSMTPFSG (2008) Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg Am 90(10):2057–2061. https://doi.org/10.2106/JBJS.G.01191

    Article  PubMed  Google Scholar 

  7. Moroni A, Hoang-Kim A, Lio V, Giannini S (2006) Current augmentation fixation techniques for the osteoporotic patient. Scand J Surg 95(2):103–109

    Article  PubMed  CAS  Google Scholar 

  8. Yang HL, Zhu XS, Chen L, Chen CM, Mangham DC, Coulton LA, Aiken SS (2012) Bone healing response to a synthetic calcium sulfate/beta-tricalcium phosphate graft material in a sheep vertebral body defect model. J Biomed Mater Res B Appl Biomater 100(7):1911–1921. https://doi.org/10.1002/jbm.b.32758

    Article  PubMed  CAS  Google Scholar 

  9. Mattsson P, Alberts A, Dahlberg G, Sohlman M, Hyldahl HC, Larsson S (2005) Resorbable cement for the augmentation of internally-fixed unstable trochanteric fractures. A prospective, randomised multicentre study. J Bone Joint Surg Br Vol 87(9):1203–1209. https://doi.org/10.1302/0301-620X.87B9.15792

    Article  CAS  Google Scholar 

  10. Dall’Oca C, Maluta T, Moscolo A, Lavini F, Bartolozzi P (2010) Cement augmentation of intertrochanteric fractures stabilised with intramedullary nailing. Injury 41(11):1150–1155. https://doi.org/10.1016/j.injury.2010.09.026

    Article  PubMed  Google Scholar 

  11. Weaver CM, Alexander DD, Boushey CJ, Dawson-Hughes B, Lappe JM, LeBoff MS, Liu S, Looker AC, Wallace TC, Wang DD (2016) Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos Int 27(1):367–376. https://doi.org/10.1007/s00198-015-3386-5

    Article  PubMed  CAS  Google Scholar 

  12. Chesser TJ, Fox R, Harding K, Halliday R, Barnfield S, Willett K, Lamb S, Yau C, Javaid MK, Gray AC, Young J, Taylor H, Shah K, Greenwood R (2016) The administration of intermittent parathyroid hormone affects functional recovery from trochanteric fractured neck of femur: a randomised prospective mixed method pilot study. Bone Joint J 98-B(6):840–845. https://doi.org/10.1302/0301-620X.98B6.36794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 51(4):737–755

    Article  PubMed  CAS  Google Scholar 

  14. Jensen MP, Chen C, Brugger AM (2003) Interpretation of visual analog scale ratings and change scores: a reanalysis of two clinical trials of postoperative pain. J Pain 4(7):407–414

    Article  PubMed  Google Scholar 

  15. Singh JA, Schleck C, Harmsen S, Lewallen D (2016) Clinically important improvement thresholds for Harris Hip Score and its ability to predict revision risk after primary total hip arthroplasty. BMC Musculoskelet Disord 17:256. https://doi.org/10.1186/s12891-016-1106-8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marsh D (1998) Concepts of fracture union, delayed union, and nonunion. Clin Orthop Relat Res 355S(355 Suppl):S22–S30

    Article  Google Scholar 

  17. Morshed S (2014) Current options for determining fracture union. Advances in medicine 2014:1–12. https://doi.org/10.1155/2014/708574

    Article  Google Scholar 

  18. Zhang J, Liu W, Schnitzler V, Tancret F, Bouler JM (2014) Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater 10(3):1035–1049. https://doi.org/10.1016/j.actbio.2013.11.001

    Article  PubMed  CAS  Google Scholar 

  19. Neral M, Solari M, Purnell C, Wollstein R (2013) The use of bone cement in difficult distal radius fractures. Hand 8(4):387–391. https://doi.org/10.1007/s11552-013-9548-z

    Article  PubMed  Google Scholar 

  20. Bajammal SS, Zlowodzki M, Lelwica A, Tornetta P 3rd, Einhorn TA, Buckley R, Leighton R, Russell TA, Larsson S, Bhandari M (2008) The use of calcium phosphate bone cement in fracture treatment. A meta-analysis of randomized trials. J Bone Joint Surg Am 90(6):1186–1196. https://doi.org/10.2106/JBJS.G.00241

    Article  PubMed  Google Scholar 

  21. Werner CM, Scheyerer MJ, Schmitt J, Wanner GA, Simmen HP (2012) Minimally invasive balloon-assisted reduction and internal fixation of tibial plateau fractures. Unfallchirurg 115(12):1126–1132. https://doi.org/10.1007/s00113-012-2245-5

    Article  PubMed  CAS  Google Scholar 

  22. Goodman SB, Bauer TW, Carter D, Casteleyn PP, Goldstein SA, Kyle RF, Larsson S, Stankewich CJ, Swiontkowski MF, Tencer AF, Yetkinler DN, Poser RD (1998) Norian SRS cement augmentation in hip fracture treatment. Laboratory and initial clinical results. Clin Orthop Relat Res 348:42–50

    Article  Google Scholar 

  23. Mattsson P, Larsson S (2004) Unstable trochanteric fractures augmented with calcium phosphate cement. A prospective randomized study using radiostereometry to measure fracture stability. Scand J Surg 93(3):223–228

    Article  PubMed  CAS  Google Scholar 

  24. Maestretti G, Cremer C, Otten P, Jakob RP (2007) Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur Spine J 16(5):601–610. https://doi.org/10.1007/s00586-006-0258-x

    Article  PubMed  Google Scholar 

  25. Maestretti G, Sutter P, Monnard E, Ciarpaglini R, Wahl P, Hoogewoud H, Gautier E (2014) A prospective study of percutaneous balloon kyphoplasty with calcium phosphate cement in traumatic vertebral fractures: 10-year results. Eur Spine J 23(6):1354–1360. https://doi.org/10.1007/s00586-014-3206-1

    Article  PubMed  Google Scholar 

  26. Kopylov P, Jonsson K, Thorngren KG, Aspenberg P (1996) Injectable calcium phosphate in the treatment of distal radial fractures. J Hand Surg Br 21(6):768–771

    Article  PubMed  CAS  Google Scholar 

  27. Cassidy C, Jupiter JB, Cohen M, Delli-Santi M, Fennell C, Leinberry C, Husband J, Ladd A, Seitz WR, Constanz B (2003) Norian SRS cement compared with conventional fixation in distal radial fractures. A randomized study. J Bone Joint Surg Am 85-A(11):2127–2137

    Article  PubMed  Google Scholar 

  28. Zimmermann R, Gabl M, Lutz M, Angermann P, Gschwentner M, Pechlaner S (2003) Injectable calcium phosphate bone cement Norian SRS for the treatment of intra-articular compression fractures of the distal radius in osteoporotic women. Arch Orthop Trauma Surg 123(1):22–27. https://doi.org/10.1007/s00402-002-0458-8

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-J. Kim.

Ethics declarations

Prior approval for this study was obtained from the Scientific Review Board of Hanil General Hospital.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments.

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SJ., Park, HS., Lee, DW. et al. Is calcium phosphate augmentation a viable option for osteoporotic hip fractures?. Osteoporos Int 29, 2021–2028 (2018). https://doi.org/10.1007/s00198-018-4572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-018-4572-z

Keywords

Navigation