Skip to main content

Advertisement

Log in

Constitutive melanin density is associated with higher 25-hydroxyvitamin D and potentially total body BMD in older Caucasian adults via increased sun tolerance and exposure

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Greater skin pigmentation reduces dose equivalent cutaneous vitamin D3 production, potentially impacting lifetime vitamin D status and fracture risk. We show that melanin density was positively associated with 25-hydroxyvitamin D and total body bone mineral density. These relationships were partially explained by greater sun exposure due to more permissive skin phenotype.

Introduction

Higher cutaneous melanin reduces vitamin D3 production. This may impact lifetime vitamin D status and increase fracture risk. This study aimed to describe the relationship between spectrophotometrically determined constitutive melanin density, osteoporotic risk factors and potential intermediaries in a cohort of exclusively older Caucasian adults.

Methods

One thousand seventy-two community-dwelling adults aged 50–80 years had constitutive melanin density quantified using spectrophotometry. Sun exposure, skin phenotype, non-melanoma skin cancer (NMSC) prevalence and smoking status were assessed by questionnaire. Bone mineral density (BMD), falls risk, physical activity and 25-hydroxyvitamin D were measured using DXA, the short form Physiological Profile Assessment, pedometer and radioimmunoassay, respectively.

Results

Higher melanin density was independently associated with greater ability to tan (RR = 1.27, p < 0.001), less propensity to sunburn (RR = 0.92, p < 0.001), fewer lifetime sunburns (RR = 0.94, p = 0.01), current smoking (RR = 1.41, p < 0.001), female sex (RR = 1.24, p < 0.001) and less photodamage (RR = 0.98, p = 0.01). The associations between melanin density and sun exposure (RR = 1.05–1.11, p < 0.001–0.01), sun protection behaviours (RR = 0.89, p < 0.001) and NMSC prevalence (RR = 0.75, p = 0.001) were no longer significant after taking into account skin phenotype and sun exposure, respectively. 25-Hydroxyvitamin D was strongly associated with higher melanin density (β = 1.71–2.05, p = 0.001). The association between melanin density and total body BMD (β = 0.007, p = 0.04) became non-significant after adjustment for 25-hydroxyvitamin D. There was no association between melanin density and physical activity, falls risk or BMD at other sites.

Conclusions

Our data support a model of higher constitutive melanin density underpinning a less photosensitive skin phenotype, permitting greater sun exposure with fewer sequelae and yielding higher 25-hydroxyvitamin D and, potentially, total body BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B (2004) Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. Am J Med 116:634–639

    Article  PubMed  CAS  Google Scholar 

  2. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B (2006) Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 84:18–28

    Article  PubMed  CAS  Google Scholar 

  3. Kuchuk NO, Pluijm SM, van Schoor NM, Looman CW, Smit JH, Lips P (2009) Relationships of serum 25-hydroxyvitamin D to bone mineral density and serum parathyroid hormone and markers of bone turnover in older persons. J Clin Endocrinol Metab 94:1244–1250

    Article  PubMed  CAS  Google Scholar 

  4. Ooms ME, Lips P, Van Lingen A, Valkenburg HA (1993) Determinants of bone mineral density and risk factors for osteoporosis in healthy elderly women. J Bone Miner Res 8:669–675

    Article  PubMed  CAS  Google Scholar 

  5. Mowe M, Haug E, Bohmer T (1999) Low serum calcidiol concentration in older adults with reduced muscular function. J Am Geriatr Soc 47:220–226

    Article  PubMed  CAS  Google Scholar 

  6. Visser M, Deeg DJ, Lips P (2003) Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 88:5766–5772

    Article  PubMed  CAS  Google Scholar 

  7. Stein MS, Wark JD, Scherer SC, Walton SL, Chick P, Di Carlantonio M et al (1999) Falls relate to vitamin D and parathyroid hormone in an Australian nursing home and hostel. J Am Geriatr Soc 47:1195–1201

    Article  PubMed  CAS  Google Scholar 

  8. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM et al (2012) Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev 12:CD007146

    Google Scholar 

  9. Muir SW, Montero-Odasso M (2011) Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 59:2291–2300

    Article  PubMed  Google Scholar 

  10. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE (1997) Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 337:670–676

    Article  PubMed  CAS  Google Scholar 

  11. Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A (2007) Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet 370:657–666

    Article  PubMed  CAS  Google Scholar 

  12. Bischoff-Ferrari HA, Kiel DP, Dawson-Hughes B, Orav JE, Li R, Spiegelman D, Dietrich T, Willett WC (2009) Dietary calcium and serum 25-hydroxyvitamin D status in relation to BMD among U.S. adults. J Bone Miner Res 24:935–942

    Article  PubMed  CAS  Google Scholar 

  13. Kuchuk NO, van Schoor NM, Pluijm SM, Chines A, Lips P (2009) Vitamin D status, parathyroid function, bone turnover, and BMD in postmenopausal women with osteoporosis: global perspective. J Bone Miner Res 24:693–701

    Article  PubMed  CAS  Google Scholar 

  14. Ward KA, Das G, Berry JL, Roberts SA, Rawer R, Adams JE, Mughal Z (2009) Vitamin D status and muscle function in post-menarchal adolescent girls. J Clin Endocrinol Metab 94:559–563

    Article  PubMed  CAS  Google Scholar 

  15. Vieth R (1999) Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 69:842–856

    Article  PubMed  CAS  Google Scholar 

  16. Srikanth V, Fryer J, Venn A, Blizzard L, Newman L, Cooley H, Albion T, Jones G (2007) The association between non-melanoma skin cancer and osteoporotic fractures—a population-based record linkage study. Osteoporos Int 18:687–692

    Article  PubMed  CAS  Google Scholar 

  17. Thompson MJW, Aitken DA, Otahal P, Cicolini J, Winzenberg TM, Jones G (2017) The relationship between cumulative lifetime ultraviolet radiation exposure, bone mineral density, falls risk and fractures in older adults. Osteoporos Int 28:2061–2068

    Article  PubMed  CAS  Google Scholar 

  18. Clemens TL, Adams JS, Henderson SL, Holick MF (1982) Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet 1:74–76

    Article  PubMed  CAS  Google Scholar 

  19. Holick MF, MacLaughlin JA, Doppelt SH (1981) Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science 211:590–593

    Article  PubMed  CAS  Google Scholar 

  20. Looker AC, Dawson-Hughes B, Calvo MS, Gunter EW, Sahyoun NR (2002) Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III. Bone 30:771–777

    Article  PubMed  CAS  Google Scholar 

  21. Aloia JF (2008) African Americans, 25-hydroxyvitamin D, and osteoporosis: a paradox. Am J Clin Nutr 88:545S–550S

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Glass D, Lens M, Swaminathan R, Spector TD, Bataille V (2009) Pigmentation and vitamin D metabolism in Caucasians: low vitamin D serum levels in fair skin types in the UK. PLoS One 4:e6477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Malvy DJ, Guinot C, Preziosi P, Galan P, Chapuy MC, Maamer M et al (2000) Relationship between vitamin D status and skin phototype in general adult population. J Photochem Photobiol 71:466–469

    Article  CAS  Google Scholar 

  24. May H, Murphy S, Khaw KT (1995) Bone mineral density and its relationship to skin colour in Caucasian females. Eur J Clin Investig 25:85–89

    Article  CAS  Google Scholar 

  25. Thompson MJ, Aitken DA, van der Mei IA, Otahal P, Cicolini J, Winzenberg TM et al (2007) Predictors of Beagley-Gibson skin cast grade in older adults. Skin Res Technol 23:235–242

    Article  Google Scholar 

  26. Dwyer T, Muller HK, Blizzard L, Ashbolt R, Phillips G (1998) The use of spectrophotometry to estimate melanin density in Caucasians. Cancer Epidemiol Biomark Prev 7:203–206

    CAS  Google Scholar 

  27. English DR, Armstrong BK, Kricker A, Winter MG, Heenan PJ, Randell PL (1998) Case-control study of sun exposure and squamous cell carcinoma of the skin. Int J Cancer 77:347–353

    Article  PubMed  CAS  Google Scholar 

  28. Holman CD, Armstrong BK, Evans PR, Lumsden GJ, Dallimore KJ, Meehan CJ et al (1984) Relationship of solar keratosis and history of skin cancer to objective measures of actinic skin damage. Br J Dermatol 110:129–138

    Article  PubMed  CAS  Google Scholar 

  29. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB, on behalf of the Health ABC Study Investigators (2003) Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 51:1602–1609

    Article  PubMed  Google Scholar 

  30. Lord SR, Menz HB, Tiedemann A (2003) A physiological profile approach to falls risk assessment and prevention. Phys Ther 83:237–252

    PubMed  Google Scholar 

  31. Scott D, Blizzard L, Fell J, Jones G (2011) Prospective associations between ambulatory activity, body composition and muscle function in older adults. Scand J Med Sci Sports 21:e168–e175

    Article  PubMed  CAS  Google Scholar 

  32. Lucas RM, Ponsonby AL, Dear K, Valery PC, Taylor B, van der Mei I, McMichael AJ, Pender MP, Chapman C, Coulthard A, Kilpatrick TJ, Stankovich J, Williams D, Dwyer T (2013) Vitamin D status: multifactorial contribution of environment, genes and other factors in healthy Australian adults across a latitude gradient. J Steroid Biochem Mol Biol 136:300–308

    Article  PubMed  CAS  Google Scholar 

  33. Saternus R, Pilz S, Graber S, Kleber M, Marz W, Vogt T et al (2015) A closer look at evolution: variants (SNPs) of genes involved in skin pigmentation, including EXOC2, TYR, TYRP1, and DCT, are associated with 25(OH)D serum concentration. Endocrinology 156:39–47

    Article  PubMed  CAS  Google Scholar 

  34. Araki S, Murata K, Ushio K, Sakai R (1983) Dose-response relationship between tobacco consumption and melanin pigmentation in the attached gingiva. Arch Environ Occup Health 38:375–378

    Article  CAS  Google Scholar 

  35. Sarswathi TR, Kumar SN, Kavitha KM (2003) Oral melanin pigmentation in smoked and smokeless tobacco users in India. Indian J Dent Res 14:101–106

    PubMed  CAS  Google Scholar 

  36. Yerger VB, Malone RE (2006) Melanin and nicotine: a review of the literature. Nicotine Tob 8:487–498

    Article  CAS  Google Scholar 

  37. Multani S (2013) Interrelationship of smoking, lip and gingival melanin pigmentation, and periodontal status. Addict Health 5:57–65

    PubMed  PubMed Central  Google Scholar 

  38. Cho YH, Jeong DW, Seo SH, Lee SY, Choi EJ, Kim YJ, Lee JG, Lee YH, Bae MJ, Chin HW (2012) Changes in skin color after smoking cessation. Korean J Fam Med 33:105–109

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jablonski NG, Chaplin G (2000) The evolution of human skin coloration. J Hum Evol 39:57–106

    Article  PubMed  CAS  Google Scholar 

  40. Jablonski NG, Chaplin G (2010) Human skin pigmentation as an adaptation to UV radiation. Natl Acad Sci USA 107:8962–8968

    Article  Google Scholar 

  41. Sack J, Healey DL, de Graaf AP, Wilkinson RM, Wilkinson CH, Barbour JM, Coote MA, McCartney PJ, Rait JL, Cooper RL, Ring MA, Mackey DA (1996) The problem of overlapping glaucoma families in the Glaucoma Inheritance Study in Tasmania (GIST). Ophthalmic Genet 17:209–214

    Article  PubMed  CAS  Google Scholar 

  42. Martin TJ, Ng KW, Nicholson GC (1988) Cell biology of bone. Bailliere Clin Endocrinol Metab 2:1–29

    Article  CAS  Google Scholar 

  43. Sigurdsson G, Franzson L, Steingrimsdottir L, Sigvaldason H (2000) The association between parathyroid hormone, vitamin D and bone mineral density in 70-year-old Icelandic women. Osteoporos Int 11:1031–1035

    Article  PubMed  CAS  Google Scholar 

  44. Kennel KA, Riggs BL, Achenbach SJ, Oberg AL, Khosla S (2003) Role of parathyroid hormone in mediating age-related changes in bone resorption in men. Osteoporos Int 14:631–636

    Article  PubMed  CAS  Google Scholar 

  45. van der Mei IA, Blizzard L, Stankovich J, Ponsonby AL, Dwyer T (2002) Misclassification due to body hair and seasonal variation on melanin density estimates for skin type using spectrophotometry. J Photochem Photobiol 68:45–52

    Article  Google Scholar 

Download references

Acknowledgments

The TASOAC study was supported by the National Health and Medical Research Council of Australia, Tasmanian Community Fund, Masonic Centenary Medical Research Foundation, Royal Hobart Hospital Research Foundation, and Arthritis Foundation of Australia. No funding body played any role in the design of the study, the analysis of its data or the drafting of the current manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.J.W. Thompson.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, M., Jones, G. & Aitken, D. Constitutive melanin density is associated with higher 25-hydroxyvitamin D and potentially total body BMD in older Caucasian adults via increased sun tolerance and exposure. Osteoporos Int 29, 1887–1895 (2018). https://doi.org/10.1007/s00198-018-4568-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-018-4568-8

Keywords

Navigation