Skip to main content

Advertisement

Log in

Chronic hyponatremia and association with osteoporosis among a large racially/ethnically diverse population

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Chronic hyponatremia may contribute to decreased bone density. We studied 341,003 men and women who underwent DXA testing and observed that individuals with chronic hyponatremia (sodium < 135 mEq/L) had an 11% greater likelihood of having osteoporosis. There was a dose-dependent effect with lower sodium and stronger association with osteoporosis.

Introduction

Chronic hyponatremia has been associated with both neurologic deficits and increased risk of gait abnormalities leading to falls and resultant bone fractures. Whether chronic hyponatremia contributes to decreased bone density is uncertain. We evaluated whether chronic, mild hyponatremia based on serial sodium measurements was associated with increased risk of osteoporosis within a large, ethnically diverse population.

Methods

This is a retrospective cohort study between January 1, 1998 and December 31, 2014 within Kaiser Permanente Southern California, an integrated healthcare delivery system. Men and women were aged ≥ 55 years with ≥ 2 serum sodium measurements prior to dual-energy X-ray absorptiometry (DXA) testing. Time-weighted (TW) mean sodium values were calculated by using the proportion of time (weight) elapsed between sodium measurements and defined as < 135 mEq/L. Osteoporosis defined as any T-score value ≤ − 2.5 of lumbar spine, femoral neck, or hip.

Results

Among 341,003 individuals with 3,330,903 sodium measurements, 11,539 (3.4%) had chronic hyponatremia and 151,505 (44.4%) had osteoporosis. Chronic hyponatremic individuals had an osteoporosis RR (95% CI) of 1.11 (1.09, 1.13) compared to those with normonatremia. A TW mean sodium increase of 3 mEq/L was associated with a lower risk of osteoporosis [adjusted RR (95% CI) 0.95 (0.93, 0.96)]. A similar association was observed when the arithmetic mean sodium value was used for comparison.

Conclusions

We observed a modest increase in risk for osteoporosis in people with chronic hyponatremia. There was also a graded association between higher TW mean sodium values and lower risk of osteoporosis. Our findings underscore the premise that chronic hyponatremia may lead to adverse physiological effects and responses which deserves better understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adrogue HJ, Madias NE (2000) Hyponatremia. N Engl J Med 342:1581–1589

    Article  CAS  PubMed  Google Scholar 

  2. Kovesdy CP, Lott EH, Lu JL, Malakauskas SM, Ma JZ, Molnar MZ, Kalantar-Zadeh K (2012) Hyponatremia, hypernatremia, and mortality in patients with chronic kidney disease with and without congestive heart failure. Circulation 125:677–684

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kumar S, Berl T (1998) Sodium. Lancet 352:220–228

    Article  CAS  PubMed  Google Scholar 

  4. Upadhyay A, Jaber BL, Madias NE (2006) Incidence and prevalence of hyponatremia. Am J Med 119:S30–S35

    Article  CAS  PubMed  Google Scholar 

  5. Miller M (2006) Hyponatremia and arginine vasopressin dysregulation: mechanisms, clinical consequences, and management. J Am Geriatr Soc 54:345–353

    Article  PubMed  Google Scholar 

  6. Miller M, Morley JE, Rubenstein LZ (1995) Hyponatremia in a nursing home population. J Am Geriatr Soc 43:1410–1413

    Article  CAS  PubMed  Google Scholar 

  7. Ayus JC, Negri AL, Kalantar-Zadeh K, Moritz ML (2012) Is chronic hyponatremia a novel risk factor for hip fracture in the elderly? Nephrol Dial Transpl 27:3725–3731

    Article  Google Scholar 

  8. Hawkins RC (2003) Age and gender as risk factors for hyponatremia and hypernatremia. Clin Chim Acta 337:169–172

    Article  CAS  PubMed  Google Scholar 

  9. Moritz ML, Ayus JC (2003) The pathophysiology and treatment of hyponatraemic encephalopathy: an update. Nephroly Dial Transpl 18:2486–2491

    Article  Google Scholar 

  10. Arieff AI (1986) Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med 314:1529–1535

    Article  CAS  PubMed  Google Scholar 

  11. Renneboog B, Musch W, Vandemergel X, Manto MU, Decaux G (2006) Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med 119(71):e71–e78

    Google Scholar 

  12. Sandhu HS, Gilles E, DeVita MV, Panagopoulos G, Michelis MF (2009) Hyponatremia associated with large-bone fracture in elderly patients. Int Urol Nephrol 41:733–737

    Article  PubMed  Google Scholar 

  13. Hoorn EJ, Rivadeneira F, van Meurs JB, Ziere G, Stricker BH, Hofman A, Pols HA, Zietse R, Uitterlinden AG, Zillikens MC (2011) Mild hyponatremia as a risk factor for fractures: the Rotterdam study. J Bone Miner Res 26:1822–1828

  14. Kinsella S, Moran S, Sullivan MO, Molloy MG, Eustace JA (2010) Hyponatremia independent of osteoporosis is associated with fracture occurrence. Clin J Am Soc Nephrol : CJASN 5:275–280

    Article  CAS  PubMed  Google Scholar 

  15. Verbalis JG, Barsony J, Sugimura Y, Tian Y, Adams DJ, Carter EA, Resnick HE (2010) Hyponatremia-induced osteoporosis. J Bone Mineral Res 25:554–563

    Article  CAS  Google Scholar 

  16. Barsony J, Sugimura Y, Verbalis JG (2011) Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. J Biol Chem 286:10,864–10,875

    Article  CAS  Google Scholar 

  17. Tamma R, Sun L, Cuscito C, Lu P, Corcelli M, Li J, Colaianni G, Moonga SS, di Benedetto A, Grano M, Colucci S, Yuen T, New MI, Zallone A, Zaidi M (2013) Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proc Natl Acad Sci U S A 110:18,644–18,649

    Article  CAS  Google Scholar 

  18. Afshinnia F, Sundaram B, Ackermann RJ, Wong KK (2015) Hyponatremia and osteoporosis: reappraisal of a novel association. Osteoporos Int 26:2291–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kruse C, Eiken P, Vestergaard P (2015) Hyponatremia and osteoporosis: insights from the Danish National Patient Registry. Osteoporos Int 26:1005–1016

    Article  CAS  PubMed  Google Scholar 

  20. Usala RL, Fernandez SJ, Mete M, Cowen L, Shara NM, Barsony J, Verbalis JG (2015) Hyponatremia is associated with increased osteoporosis and bone fractures in a large US health system population. J Clin Endocrinol Metab 100:3021–3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Derose SF, Contreras R, Coleman KJ, Koebnick C, Jacobsen SJ (2013) Race and ethnicity data quality and imputation using U.S. Census data in an integrated health system: the Kaiser Permanente Southern California experience. Med Care Res Rev 70:330–345

    Article  PubMed  Google Scholar 

  22. Koebnick C, Langer-Gould AM, Gould MK, Chao CR, Iyer RL, Smith N, Chen W, Jacobsen SJ (2012) Sociodemographic characteristics of members of a large, integrated health care system: comparison with US Census Bureau data. Perm J 16:37–41

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sim JJ, Bhandari SK, Shi J, Reynolds K, Calhoun DA, Kalantar-Zadeh K, Jacobsen SJ (2015) Comparative risk of renal, cardiovascular, and mortality outcomes in controlled, uncontrolled resistant, and nonresistant hypertension. Kidney Int 88:622–632

    Article  PubMed  PubMed Central  Google Scholar 

  24. Levey AS, Stevens LA, Schmid CH, Zhang Y(L), Castro AF III, Feldman HI, Kusek JW, Eggers P, van Lente F, Greene T, Coresh J, for the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nih Consensus Development Panel on Osteoporosis Prevention D, Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795

    Article  Google Scholar 

  26. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521

    Article  CAS  PubMed  Google Scholar 

  27. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882

    Article  CAS  PubMed  Google Scholar 

  28. Tolouian R, Alhamad T, Farazmand M, Mulla ZD (2012) The correlation of hip fracture and hyponatremia in the elderly. J Nephrol 25:789–793

    Article  PubMed  Google Scholar 

  29. Ayus JC, Arieff AI (1999) Chronic hyponatremic encephalopathy in postmenopausal women: association of therapies with morbidity and mortality. JAMA 281:2299–2304

    Article  CAS  PubMed  Google Scholar 

  30. Gankam Kengne F, Andres C, Sattar L, Melot C, Decaux G (2008) Mild hyponatremia and risk of fracture in the ambulatory elderly. Q J Med 101:583–588

    Article  CAS  Google Scholar 

  31. Ayus JC, Achinger SG, Arieff A (2008) Brain cell volume regulation in hyponatremia: role of sex, age, vasopressin, and hypoxia. Am J Physiol Renal Physiol 295:F619–F624

    Article  CAS  PubMed  Google Scholar 

  32. Vandergheynst F, Gombeir Y, Bellante F, Perrotta G, Remiche G, Melot C, Mavroudakis N, Decaux G (2016) Impact of hyponatremia on nerve conduction and muscle strength. Eur J Clin Investig 46:328–333

    Article  Google Scholar 

  33. Bergstrom WH (1955) The participation of bone in total body sodium metabolism in the rat. J Clin Invest 34:997–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gross PA, Pehrisch H, Rascher W, Schomig A, Hackenthal E, Ritz E (1987) Pathogenesis of clinical hyponatremia: observations of vasopressin and fluid intake in 100 hyponatremic medical patients. Eur J Clin Investig 17:123–129

    Article  CAS  Google Scholar 

  35. Morton DJ, Barrett-Connor EL, Edelstein SL (1994) Thiazides and bone mineral density in elderly men and women. Am J Epidemiol 139:1107–1115

    Article  CAS  PubMed  Google Scholar 

  36. Schoofs MW, van der Klift M, Hofman A, de Laet CE, Herings RM, Stijnen T, Pols HA, Stricker BH (2003) Thiazide diuretics and the risk for hip fracture. Ann Intern Med 139:476–482

    Article  PubMed  Google Scholar 

Download references

Financial support

This study was funded and supported by Otsuka Pharmaceutical Development & Commercialization, Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Adams or J. J. Sim.

Ethics declarations

Conflicts of interest

A. Adams, B. Li, S. Bhandari, C. Rhee, K. Kalantar-Zadeh, S. Jacobsen, and J. Sim report no conflicts of interest relevant to this manuscript. H. Krasa, S. Kamat, and S. Sundar are employees of Otsuka Pharmaceutical Development & Commercialization, Inc., who has a treatment for hyponatremia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, A.L., Li, B.H., Bhandari, S. et al. Chronic hyponatremia and association with osteoporosis among a large racially/ethnically diverse population. Osteoporos Int 30, 853–861 (2019). https://doi.org/10.1007/s00198-018-04832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-018-04832-4

Keywords

Navigation