Skip to main content
Log in

Molecular diagnosis in children with fractures but no extraskeletal signs of osteogenesis imperfecta

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In 26 of 94 individuals (28%) below 21 years of age who had a significant fracture history but did not have extraskeletal features of osteogenesis imperfecta (OI), we detected disease-causing mutations in OI-associated genes.

Introduction

In children who have mild bone fragility but do not have extraskeletal features of OI, it can be difficult to establish a diagnosis on clinical grounds. Here, we assessed the diagnostic yield of genetic testing in this context, by sequencing a panel of genes that are associated with OI.

Methods

DNA sequence analysis was performed on 94 individuals below 21 years of age who had a significant fracture history but had white sclera and no signs of dentinogenesis imperfecta.

Results

Disease-causing variants were detected in 28% of individuals and affected 5 different genes. Twelve individuals had mutations in COL1A1 or COL1A2, 8 in LRP5, 4 in BMP1, and 2 in PLS3.

Conclusions

DNA sequence analysis of currently known OI-associated genes identified disease-causing variants in more than a quarter of individuals with a significant fracture history but without extraskeletal manifestations of OI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rauch F, Neu C, Manz F, Schoenau E (2001) The development of metaphyseal cortex--implications for distal radius fractures during growth. J Bone Miner Res 16:1547–1555

    Article  PubMed  CAS  Google Scholar 

  2. Farr JN, Amin S, Melton LJ 3rd, Kirmani S, McCready LK, Atkinson EJ, Muller R, Khosla S (2014) Bone strength and structural deficits in children and adolescents with a distal forearm fracture resulting from mild trauma. J Bone Miner Res 29:590–599

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ward LM, Konji VN, Ma J (2016) The management of osteoporosis in children. Osteoporos Int 27:2147–2179

    Article  PubMed  CAS  Google Scholar 

  4. Trejo P, Rauch F (2016) Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment. Osteoporos Int 27:3427–3437

    Article  PubMed  CAS  Google Scholar 

  5. Forlino A, Marini JC (2016) Osteogenesis imperfecta. Lancet 387:1657–1671

    Article  PubMed  CAS  Google Scholar 

  6. Bardai G, Moffatt P, Glorieux FH, Rauch F (2016) DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum. Osteoporos Int 27:3607–3613

    Article  PubMed  CAS  Google Scholar 

  7. Rauch F, Lalic L, Roughley P, Glorieux FH (2010) Genotype-phenotype correlations in nonlethal osteogenesis imperfecta caused by mutations in the helical domain of collagen type I. Eur J Hum Genet 18:642–647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lindahl K, Astrom E, Rubin CJ, Grigelioniene G, Malmgren B, Ljunggren O, Kindmark A (2015) Genetic epidemiology, prevalence, and genotype-phenotype correlations in the Swedish population with osteogenesis imperfecta. Eur J Hum Genet 23:1042–1050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rauch F, Plotkin H, Dimeglio L, Engelbert RH, Henderson RC, Munns C, Wenkert D, Zeitler P (2008) Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2007 pediatric official positions. J Clin Densitom 11:22–28

    Article  PubMed  Google Scholar 

  10. Rauch F, Glorieux FH (2004) Osteogenesis imperfecta. Lancet 363:1377–1385

    Article  PubMed  CAS  Google Scholar 

  11. Ogden CL, Kuczmarski RJ, Flegal KM, Mei Z, Guo S, Wei R, Grummer-Strawn LM, Curtin LR, Roche AF, Johnson CL (2002) Centers for Disease Control and Prevention 2000 growth charts for the United States: improvements to the 1977 National Center for Health Statistics version. Pediatrics 109:45–60

    Article  PubMed  Google Scholar 

  12. Kalkwarf HJ, Zemel BS, Yolton K, Heubi JE (2013) Bone mineral content and density of the lumbar spine of infants and toddlers: influence of age, sex, race, growth, and human milk feeding. J Bone Miner Res 28:206–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Zemel BS, Kalkwarf HJ, Gilsanz V et al (2011) Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab 96:3160–3169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081

    Article  PubMed  CAS  Google Scholar 

  15. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 20:110–121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fahiminiya S, Al-Jallad H, Majewski J, Palomo T, Moffatt P, Roschger P, Klaushofer K, Glorieux FH, Rauch F (2015) A polyadenylation site variant causes transcript-specific BMP1 deficiency and frequent fractures in children. Hum Mol Genet 24:516–524

    Article  PubMed  CAS  Google Scholar 

  20. Fahiminiya S, Majewski J, Al-Jallad H, Moffatt P, Mort J, Glorieux FH, Roschger P, Klaushofer K, Rauch F (2014) Osteoporosis caused by mutations in PLS3: clinical and bone tissue characteristics. J Bone Miner Res 29:1805–1814

    Article  PubMed  CAS  Google Scholar 

  21. Korvala J, Juppner H, Makitie O et al (2012) Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med Genet 13:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Dawson PA, Kelly TE, Marini JC (1999) Extension of phenotype associated with structural mutations in type I collagen: siblings with juvenile osteoporosis have an alpha2(I)Gly436 --> Arg substitution. J Bone Miner Res 14:449–455

    Article  PubMed  CAS  Google Scholar 

  23. Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192

    Article  PubMed  CAS  Google Scholar 

  24. Scotti MM, Swanson MS (2016) RNA mis-splicing in disease. Nat Rev Genet 17:19–32

    Article  PubMed  CAS  Google Scholar 

  25. Ben Amor IM, Roughley P, Glorieux FH, Rauch F (2013) Skeletal clinical characteristics of osteogenesis imperfecta caused by haploinsufficiency mutations in COL1A1. J Bone Miner Res 28:2001–2007

    Article  PubMed  CAS  Google Scholar 

  26. Rauch F, Travers R, Parfitt AM, Glorieux FH (2000) Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone 26:581–589

    Article  PubMed  CAS  Google Scholar 

  27. Brunetti G, Papadia F, Tummolo A et al (2016) Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: the role of DKK1, RANKL, and TNF-alpha. Osteoporos Int 27:2355–2365

    Article  PubMed  CAS  Google Scholar 

  28. Hendrickx G, Boudin E, Van Hul W (2015) A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol 11:462–474

    Article  PubMed  Google Scholar 

  29. Rivadeneira F, Makitie O (2016) Osteoporosis and bone mass disorders: from gene pathways to treatments. Trends Endocrinol Metab 27:262–281

    Article  PubMed  CAS  Google Scholar 

  30. Hartikka H, Makitie O, Mannikko M, Doria AS, Daneman A, Cole WG, Ala-Kokko L, Sochett EB (2005) Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 20:783–789

    Article  PubMed  CAS  Google Scholar 

  31. Joiner DM, Ke J, Zhong Z, Xu HE, Williams BO (2013) LRP5 and LRP6 in development and disease. Trends Endocrinol Metab 24:31–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mao W, Wordinger RJ, Clark AF (2011) Functional analysis of disease-associated polymorphism LRP5.Q89R. Mol Vis 17:894–902

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Saarinen A, Mayranpaa MK, Lehesjoki AE, Makitie O (2010) Low-density lipoprotein receptor-related protein 5 (LRP5) variation in fracture prone children. Bone 46:940–945

    Article  PubMed  CAS  Google Scholar 

  34. Franceschi R, Vincenzi M, Camilot M, Antoniazzi F, Freemont AJ, Adams JE, Laine C, Makitie O, Mughal MZ (2015) Idiopathic juvenile osteoporosis: clinical experience from a single centre and screening of LRP5 and LRP6 genes. Calcif Tissue Int 96:575–579

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

FR received salary support from the Chercheur-Boursier Clinicien program of the Fonds de Recherche du Québec—Santé. LMW is supported by the Research Chair program at the University of Ottawa and the Departments of Pediatrics and Surgery, Children’s Hospital of Eastern Ontario. This study was supported by the Shriners of North America.

Web resources

Exome Aggregation Consortium (ExAC) Browser: http://exac.broadinstitute.org/.

Online Mendelian Inheritance in Man (OMIM), http://www.omim.org

Osteogenesis Imperfecta Variant Database: https://oi.gene.le.ac.uk/

UCSC database, version hg19: http://www.genome.ucsc.edu/

Author information

Authors and Affiliations

Authors

Contributions

GB performed analyses; LMW, PT and FHG contributed patient information; PM and FHG reviewed sequencing data; and FR conceptualized the project, contributed patient information, finalized the report, and accepts responsibility for the integrity of the data analysis. All authors have read and approved of the final version of the manuscript.

Corresponding author

Correspondence to F. Rauch.

Ethics declarations

Ethics statement

The study was approved by the Institutional Review Board of McGill University and the Research Ethics Board at the Children’s Hospital of Eastern Ontario.

Conflicts of interest

None.

Additional information

This study was supported by the Shriners of North America and the Fonds de recherche du Québec – Santé.

Electronic supplementary material

ESM 1

(DOCX 63 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardai, G., Ward, L.M., Trejo, P. et al. Molecular diagnosis in children with fractures but no extraskeletal signs of osteogenesis imperfecta. Osteoporos Int 28, 2095–2101 (2017). https://doi.org/10.1007/s00198-017-4031-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4031-2

Keywords

Navigation